Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuji Inagaki is active.

Publication


Featured researches published by Yuji Inagaki.


Current Biology | 2007

Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages

Nicola J. Patron; Yuji Inagaki; Patrick J. Keeling

Cryptomonad algae acquired their plastids by the secondary endosymbiotic uptake of a eukaryotic red alga. Several other algal lineages acquired plastids through such an event [1], but cryptomonads are distinguished by the retention of a relic red algal nucleus, the nucleomorph [2]. The nucleomorph (and its absence in other lineages) can reveal a great deal about the process and history of endosymbiosis, but only if we know the relationship between cryptomonads and other algae, and this has been controversial. Several recent analyses have suggested a relationship between plastids of cryptomonads and some or all other red alga-containing lineages [3-6], but we must also know whether host nuclear genes mirror this relationship to determine the number of endosymbiotic events, and this has not been demonstrated. We have carried out an expressed sequence tag (EST) survey of the cryptomonad Guillardia theta. Phylogenetic analyses of 102 orthologous nucleus-encoded proteins (18,425 amino acid alignment positions) show a robust sister-group relationship between cryptomonads and the haptophyte algae, which also have a red secondary plastid. This relationship demonstrates that loss of nucleomorphs must have taken place in haptophytes independently of any other red alga-containing lineages and that the ancestor of both already contained a red algal endosymbiont.


Extremophiles | 2007

Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures

Kiyotaka Takishita; Naoji Yubuki; Natsuki Kakizoe; Yuji Inagaki; Tadashi Maruyama

Recent culture-independent surveys of eukaryotic small-subunit ribosomal DNA (SSU rDNA) from many environments have unveiled unexpectedly high diversity of microbial eukaryotes (microeukaryotes) at various taxonomic levels. However, such surveys were most probably biased by various technical difficulties, resulting in underestimation of microeukaryotic diversity. In the present study on oxygen-depleted sediment from a deep-sea methane cold seep of Sagami Bay, Japan, we surveyed the diversity of eukaryotic rDNA in raw sediment samples and in two enrichment cultures. More than half of all clones recovered from the raw sediment samples were of the basidiomycetous fungus Cryptococcus curvatus. Among other clones, phylotypes of eukaryotic parasites, such as Apicomplexa, Ichthyosporea, and Phytomyxea, were identified. On the other hand, we observed a marked difference in phylotype composition in the enrichment samples. Several phylotypes belonging to heterotrophic stramenopiles were frequently found in one enrichment culture, while a phylotype of Excavata previously detected at a deep-sea hydrothermal vent dominated the other. We successfully established a clonal culture of this excavate flagellate. Since these phylotypes were not identified in the raw sediment samples, the approach incorporating a cultivation step successfully found at least a fraction of the “hidden” microeukaryotic diversity in the environment examined.


Proceedings of the Japan Academy. Series B, Physical and biological sciences | 2008

Evolving genetic code

Takeshi Ohama; Yuji Inagaki; Yoshitaka Bessho; Syozo Osawa

In 1985, we reported that a bacterium, Mycoplasma capricolum, used a deviant genetic code, namely UGA, a “universal” stop codon, was read as tryptophan. This finding, together with the deviant nuclear genetic codes in not a few organisms and a number of mitochondria, shows that the genetic code is not universal, and is in a state of evolution. To account for the changes in codon meanings, we proposed the codon capture theory stating that all the code changes are non-disruptive without accompanied changes of amino acid sequences of proteins. Supporting evidence for the theory is presented in this review. A possible evolutionary process from the ancient to the present-day genetic code is also discussed.


Gene | 2008

Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum.

Kiyotaka Takishita; Masanobu Kawachi; Mary-Hélène Noël; Takuya Matsumoto; Natsuki Kakizoe; Makoto M. Watanabe; Isao Inouye; Ken-ichiro Ishida; Tetsuo Hashimoto; Yuji Inagaki

The dinoflagellate Lepidodinium chlorophorum possesses green plastids containing chlorophylls a and b (Chl a+b), unlike most dinoflagellate plastids with Chl a+c plus a carotenoid peridinin (peridinin-containing plastids). In the present study we determined 8 plastid-encoded genes from Lepidodinium to investigate the origin of the Chl a+b-containing dinoflagellate plastids. The plastid-encoded gene phylogeny clearly showed that Lepidodinium plastids were derived from a member of Chlorophyta, consistent with pigment composition. We also isolated three different glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes from Lepidodinium-one encoding the putative cytosolic GapC enzyme and the remaining two showing affinities to the plastid-targeted GapC genes. In a GAPDH phylogeny, one of the plastid-targeted GapC-like sequences robustly grouped with those of dinoflagellates bearing peridinin-containing plastids, while the other was nested in a clade of the homologues of haptophytes and dinoflagellate genera Karenia and Karlodinium bearing haptophyte-derived plastids. Since neither host nor plastid phylogeny suggested an evolutionary connection between Lepidodinium and Karenia/Karlodinium, a lateral transfer of a plastid-targeted GapC gene most likely took place from a haptophyte or a dinoflagellate with haptophyte-derived plastids to Lepidodinium. The plastid-targeted GapC data can be considered as an evidence for the single origin of plastids in haptophytes, cryptophytes, stramenopiles, and alveolates. However, in the light of Lepidodinium GAPDH data, we need to closely examine whether the monophyly of the plastids in the above lineages inferred from plastid-targeted GapC genes truly reflects that of the host lineages.


Journal of Eukaryotic Microbiology | 2007

Ultrastructure and Ribosomal RNA Phylogeny of the Free-Living Heterotrophic Flagellate Dysnectes brevis n. gen., n. sp., a New Member of the Fornicata

Naoji Yubuki; Yuji Inagaki; Takeshi Nakayama; Isao Inouye

ABSTRACT. Dysnectes brevis n. gen., n. sp., a free‐living heterotrophic flagellate that grows under microaerophilic conditions possesses two flagella. The posterior one lies in a ventral feeding groove, suggesting that this flagellate is an excavate. Our detailed electron microscopic observations revealed that D. brevis possesses all the key ultrastructural characters considered typical of Excavata. Among the 10 excavate groups previously recognized, D. brevis displays an evolutionary affinity to members of the Fornicata (i.e. Carpediemonas, retortamonads, and diplomonads). Firstly, a strong D. brevis−Fornicata affinity was recovered in the phylogenetic analyses of small subunit ribosomal RNA (SSU rRNA) sequences, albeit the internal branching pattern of the D. brevis+Fornicata clade was not resolved with confidence. Corresponding to the SSU rRNA phylogeny, D. brevis and the Fornicata shared the following components of the flagellar apparatus: the arched B fiber bridging the right root; a posterior basal body; and a left root. Combining both morphological and molecular phylogenetic analyses, D. brevis is classified as a new free‐living excavate in the Fornicata incertae sedis.


Journal of Molecular Evolution | 1997

Algae or Protozoa: Phylogenetic Position of Euglenophytes and Dinoflagellates as Inferred from Mitochondrial Sequences

Yuji Inagaki; Yasuko Hayashi-Ishimaru; Megumi Ehara; Ikuo Igarashi; Takeshi Ohama

Abstract. The chloroplasts of euglenophytes and dinoflagellates have been suggested to be the vestiges of endosymbiotic algae acquired during the process of evolution. However, the evolutionary positions of these organisms are still inconclusive, and they have been tentatively classified as both algae and protozoa. A representative gene of the mitochondrial genome, cytochrome oxidase subunit I (coxI), was chosen and sequenced to clarify the phylogenetic positions of four dinoflagellates, two euglenophytes and one apicomplexan protist. This is the first report of mitochondrial DNA sequences for dinoflagellates and euglenophytes. Our COXI tree shows clearly that dinoflagellates are closely linked to apicomplexan parasites but not with algae. Euglenophytes and algae appear to be only remotely related, with euglenophytes sharing a possible evolutionary link with kinetoplastids. The COXI tree is in general agreement with the tree based on the nuclear encoded small subunit of ribosomal RNA (SSU rRNA) genes, but conflicts with that based on plastid genes. These results support the interpretation that chloroplasts present in euglenophytes and dinoflagellates were captured from algae through endosymbioses, while their mitochondria were inherited from the host cell. We suggest that dinoflagellates and euglenophytes were originally heterotrophic protists and that their chloroplasts are remnants of endosymbiotic algae.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Direct phylogenetic evidence for lateral transfer of elongation factor-like gene

Ryoma Kamikawa; Yuji Inagaki; Yoshihiko Sako

Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1α (EF-1α), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of “EFL-containing” lineages within “EF-1α-containing” lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1α and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1α gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor–recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1α.


Journal of Molecular Evolution | 1997

Use of a deviant mitochondrial genetic code in yellow-green algae as a landmark for segregating members within the phylum

Megumi Ehara; Yasuko Hayashi-Ishimaru; Yuji Inagaki; Takeshi Ohama

Several algae that were previously classified in the phylum Xanthophyta (yellow-green algae) were assigned in 1971 to a new phylum, Eustigmatophyta. It was anticipated that the number of algae reclassified to Eustigmatophyta would increase. However, due to the fact that the morphological characteristics that segregate eustigmatophytes from other closely related algae can be only obtained through laborious electron microscopic techniques, the number of members in this phylum have increased rather slowly. We attempted, therefore, to segregate two closely related groups of algae, eustigmatophytes and yellow-green algae, on the basis of a molecular phylogenetic tree as a means of providing an alternative method of distinguishing these phyla. We analyzed the mitochondrial cyto-chrome oxidase subunit I (COXI) gene sequences of eight algae classified as xanthophyceans and found that six manifested the expected deviant genetic code where AUA codes for methionine (AUA/Met), but not for isoleucine (AUA/Ile) as in the universal genetic code. The other two, Monodus sp. (CCMP 505) and Ophiocytium majus (CCAP 855/1), which were presumed to be yellow-green algae, and all the examined eustigmatophytes utilized AUA for Ile. In addition, the phylogenetic tree of COXI gene sequences showed that the six yellow-green algae bearing the AUA/Met deviant code composed a tight clade with a bootstrap value of 100%. The phylogenetic tree of the corresponding sequences from Monodus sp. and Ophiocytium majus and the eustigmatophytes also composed a tight cluster, but with a bootstrap value of 92%. These results strongly suggest that two previously classified members of yellow-green algae belong to the phylum Eustigmatophyta. Therefore, examination of the mitochondrial genetic code in algae appears to be a potentially very useful genetic marker for classifying these organisms, especially when it is considered with the results obtained through a molecular phylogenetic tree.


Journal of Phycology | 1998

Distribution of the mitochondrial deviant genetic code, AUA for methionine, in heterokont algae

Megumi Ehara; Kazuo Watanabe; Hiroshi Kawai; Yuji Inagaki; Yasuko Hayashi-Ishimaru; Takeshi Ohama

The DNA sequence of the cytochrome oxidase subunit I (COXI) gene (1059 bp), was determined in a number of heterokont algae, including five species of the Phaeophyceae [Chorda filum (Linnaeus) Stackhouse, Colpomenia bullosa (Saunders) Yamada, Ectocarpus sp., Pseudochorda nagaii (Tokida) Inagaki, Undaria pinnatifida (Harvey) Suringar], and a member of the Raphidophyceae [Chattonella antiqua (Hada) Ono]. The distribution of a deviant mitochondrial code, the AUA codon for methionine (AUA/Met), which was previously reported in the Xanthophyceae, was inferred from these COXI sequences. Comparative analyses of these sequences revealed that all the algae described above bear the universal genetic code, including the assignment for the AUA codon. A phylogenetic tree was constructed using the obtained sequences along with already‐published COXI sequences of various heterokont algae. The clusters of the Xanthophyceae and the Phaeophyceae were resolved as sister groups with high bootstrap support, excluding a bacillariophycean species, a raphidophycean species, and three species of the Eustigmatophyceae. Taking the distribution of the deviant code and the COXI phylogenetic tree together, the genetic code change most probably occurred in an ancestor of the Xanthophyceae after it had branched off from the Phaeophyceae.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Recombination between elongation factor 1α genes from distantly related archaeal lineages

Yuji Inagaki; Edward Susko; Andrew J. Roger

Collaboration


Dive into the Yuji Inagaki's collaboration.

Top Co-Authors

Avatar

Takeshi Ohama

Kochi University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kiyotaka Takishita

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natsuki Kakizoe

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoji Yubuki

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge