Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megumi Inomata is active.

Publication


Featured researches published by Megumi Inomata.


Cellular Signalling | 2012

Autophagy in regulation of Toll-like receptor signaling.

Takeshi Into; Megumi Inomata; Eiji Takayama; Toshiya Takigawa

Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy. Autophagy is currently known to affect both of the immune defense and suppression of inflammatory responses. In TLR-associated immune responses, autophagic lysis of intracellular microbes (called xenophagy) contributes to the former mechanism, while the latter seems to be mediated by the control of the mitochondrial integrity or selective autophagic clearance of aggregated signaling proteins (called aggrephagy). Several autophagy-related ubiquitin-binding proteins, such as SQSTM1/p62 and NDP52, mediate xenophagy and aggrephagy. In this review, we summarize the expanded knowledge regarding TLR signaling and autophagy signaling. After that, we will focus on autophagy-associated signaling downstream of TLRs and the effect of autophagy on TLR signaling, thus highlighting the signaling crosstalk between the TLR-associated innate immune responses and the regulation of innate immunity by xenophagy and aggrephagy.


Molecular and Cellular Biology | 2008

Regulation of MyD88-dependent signaling events by S nitrosylation retards toll-like receptor signal transduction and initiation of acute-phase immune responses.

Takeshi Into; Megumi Inomata; Misako Nakashima; Ken-ichiro Shibata; Hans Häcker; Kenji Matsushita

ABSTRACT Nitric oxide (NO) has been thought to regulate the immune system through S nitrosylation of the transcriptional factor NF-κB. However, regulatory effects of NO on innate immune responses are unclear. Here, we report that NO has a capability to control Toll-like receptor-mediated signaling through S nitrosylation. We found that the adaptor protein MyD88 was primarily S nitrosylated, depending on the presence of endothelial NO synthase (eNOS). S nitrosylation at a particular cysteine residue within the TIR domain of MyD88 resulted in slight reduction of the NF-κB-activating property. This modification could be restored by the antioxidant glutathione. Through S nitrosylation, NO could negatively regulate the multiple steps of MyD88 functioning, including translocation to the cell membrane after LPS stimulation, interaction with TIRAP, binding to TRAF6, and induction of IκBα phosphorylation. Interestingly, glutathione could reversely neutralize such NO-derived effects. We also found that an acute febrile response to LPS was precipitated in eNOS-deficient mice, indicating that eNOS-derived NO exerts an initial suppressive effect on inflammatory processes. Thus, NO has a potential to retard induction of MyD88-dependent signaling events through the reversible and oxidative modification by NO, by which precipitous signaling reactions are relieved. Such an effect may reflect appropriate regulation of the acute-phase inflammatory responses in living organisms.


Journal of Biological Chemistry | 2010

Regulation of MyD88 Aggregation and the MyD88-dependent Signaling Pathway by Sequestosome 1 and Histone Deacetylase 6

Takeshi Into; Megumi Inomata; Shumpei Niida; Yukitaka Murakami; Ken-ichiro Shibata

MyD88 is an essential adaptor molecule for Toll-like receptors (TLRs) and interleukin (IL)-1 receptor. MyD88 is thought to be present as condensed forms or aggregated structures in the cytoplasm, although the reason has not yet been clear. Here, we show that endogenous MyD88 is present as small speckle-like condensed structures, formation of which depends on MyD88 dimerization. In addition, formation of large aggregated structures is related to cytoplasmic accumulation of sequestosome 1 (SQSTM1; also known as p62) and histone deacetylase 6 (HDAC6), which are involved in accumulation of polyubiquitinated proteins. A gene knockdown study revealed that SQSTM1 and HDAC6 were required for MyD88 aggregation and exhibited a suppressive effect on TLR ligand-induced expression of IL-6 and NOS2 in RAW264.7 cells. SQSTM1 and HDAC6 were partially involved in suppression of several TLR4-mediated signaling events, including activation of p38 and JNK, but they hardly affected degradation of IκBα (inhibitor of nuclear factor κB). Biochemical induction of MyD88 oligomerization induced recruitment of SQSTM1 and HDAC6 to the MyD88-TRAF6 signaling complex. Repression of SQSTM1 and HDAC6 enhanced formation of the MyD88-TRAF6 complex and conversely decreased interaction of the ubiquitin-specific negative regulator CYLD with the complex. Furthermore, ubiquitin-binding regions on SQSTM1 and HDAC6 were essential for MyD88 aggregation but were not required for interaction with the MyD88 complex. Thus, our study reveals not only that SQSTM1 and HDAC6 are important determinants of aggregated localization of MyD88 but also that MyD88 activates a machinery of polyubiquitinated protein accumulation that has a modulatory effect on MyD88-dependent signal transduction.


Cellular and Molecular Life Sciences | 2012

Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20.

Megumi Inomata; Shumpei Niida; Ken-ichiro Shibata; Takeshi Into

Toll-like receptor (TLR) signaling is linked to autophagy that facilitates elimination of intracellular pathogens. However, it is largely unknown whether autophagy controls TLR signaling. Here, we report that poly(I:C) stimulation induces selective autophagic degradation of the TLR adaptor molecule TRIF and the signaling molecule TRAF6, which is revealed by gene silencing of the ubiquitin-editing enzyme A20. This type of autophagy induced formation of autophagosomes and could be suppressed by an autophagy inhibitor and lysosomal inhibitors. However, this autophagy was not associated with canonical autophagic processes, including involvement of Beclin-1 and conversion of LC3-I to LC3-II. Through screening of TRIF-interacting ‘autophagy receptors’ in human cells, we identified that NDP52 mediated the selective autophagic degradation of TRIF and TRAF6 but not TRAF3. NDP52 was polyubiquitinated by TRAF6 and was involved in aggregation of TRAF6, which may result in the selective degradation. Intriguingly, only under the condition of A20 silencing, NDP52 could effectively suppress poly(I:C)-induced proinflammatory gene expression. Thus, this study clarifies a selective autophagic mechanism mediated by NDP52 that works downstream of TRIF–TRAF6. Furthermore, although A20 is known as a signaling fine-tuner to prevent excess TLR signaling, it paradoxically downregulates the fine-tuning effect of NDP52 on TLR signaling.


Journal of Biological Chemistry | 2007

Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells

Takeshi Into; Yosuke Kanno; Jun Ichi Dohkan; Misako Nakashima; Megumi Inomata; Ken-ichiro Shibata; Charles J. Lowenstein; Kenji Matsushita

The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cγ. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cγ-dependent activation of the NF-κB pathway. Increased TLR2 expression by transfection or interferon-γ treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation.


Cellular Immunology | 2010

Effect of the antimicrobial peptide LL-37 on Toll-like receptors 2-, 3- and 4-triggered expression of IL-6, IL-8 and CXCL10 in human gingival fibroblasts

Takeshi Into; Megumi Inomata; Ken-ichiro Shibata; Yukitaka Murakami

The antimicrobial peptide LL-37 is known to have a potent LPS-neutralizing activity in monocytes and macrophages. Recently, LL-37 in gingival crevicular fluids is suggested to be the major protective factor preventing infection of periodontogenic pathogens. In this study, we tried to address the effect of LL-37 on proinflammatory responses of human gingival fibroblasts (HGFs) stimulated with Toll-like receptor (TLR)-stimulant microbial compounds. LL-37 potently suppressed LPS-induced gene expression of IL6, IL8 and CXCL10 and intracellular signaling events, degradation of IRAK-1 and IkappaBalpha and phosphorylation of p38 MAPK and IRF3, indicating that the LPS-neutralizing activity is also exerted in HGFs. LL-37 also suppressed the expression of IL6, IL8 and CXCL10 induced by the TLR3 ligand poly(I:C). LL-37 modestly attenuated the expression of IL6 and IL8 induced by the TLR2/TLR1 ligand Pam(3)CSK(4), but did not affect the expression induced by the TLR2/TLR6 ligand MALP-2. Interestingly, LL-37 rather upregulated the expression of IL6, IL8 and CXCL10 induced by another TLR2/TLR6 ligand FSL-1. Thus, the regulatory effect of LL-37 is differently exerted towards proinflammatory responses of HGFs induced by different microbial stimuli, which may lead to unbalanced proinflammatory responses of the gingival tissue to infection of oral microbes.


Clinical and Experimental Immunology | 2006

Arginine-specific gingipains from Porphyromonas gingivalis deprive protective functions of secretory leucocyte protease inhibitor in periodontal tissue

Takeshi Into; Megumi Inomata; Yosuke Kanno; Takashi Matsuyama; Miho Machigashira; Yuichi Izumi; Takahisa Imamura; Misako Nakashima; Toshihide Noguchi; Kenji Matsushita

Chronic periodontitis is correlated with Porphyromonas gingivalis infection. In this study, we found that the expression of secretory leucocyte protease inhibitor (SLPI), an endogenous inhibitor for neutrophil‐derived proteases, was reduced in gingival tissues with chronic periodontitis associated with P. gingivalis infection. The addition of vesicles of P. gingivalis decreased the amount of SLPI in the media of primary human gingival keratinocytes compared to untreated cultures. We therefore investigated how arginine‐specific gingipains (Rgps) affect the functions of SLPI, because Rgps are the major virulence factors in the vesicles and cleave a wide range of in‐host proteins. We found that Rgps digest SLPI in vitro, suppressing the release of SLPI. Rgps proteolysis of SLPI disrupted SLPI functions, which normally suppresses neutrophil elastase and neutralizes pro‐inflammatory effects of bacterial cell wall compounds in cultured human gingival fibroblasts. The protease inhibitory action of SLPI was not exerted towards Rgps. These results suggest that Rgps reduce the protective effects of SLPI on neutrophil proteases and bacterial proinflammatory compounds, by which disease in gingival tissue may be accelerated at the sites with P. gingivalis infection.


European Journal of Oral Sciences | 2010

Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts

Megumi Inomata; Takeshi Into; Yukitaka Murakami

Porphyromonas gingivalis is a major periodontogenic bacterium and possesses immunostimulatory components, such as lipopolysaccharides (LPS) and fimbriae. The host antimicrobial peptide, LL-37, suppresses proinflammatory responses of immune cells but its effect on human gingival fibroblasts (HGFs) is not known. In this study, we assessed the effect of LL-37 on the proinflammatory responses of HGFs stimulated with P. gingivalis cells and their components. Live P. gingivalis cells did not induce proinflammatory responses of HGFs, and LL-37 did not alter these responses. However, LL-37 was able to suppress the killed P. gingivalis cell-induced secretion of interleukin (IL)-6 and IL-8. LL-37 also suppressed the expression of IL6, IL8, and CXCL10 genes that was induced by P. gingivalis components, including phenol-water extracts, lipid A, and fimbriae, and the induction of phosphorylation of p38 and extracellular signal-regulated kinase (ERK) by P. gingivalis lipopolysaccharide (LPS). CAMP was found to be expressed in oral epithelial cells but not in HGFs, despite stimulation with P. gingivalis components. Therefore, LL-37 can exert a suppressive effect on P. gingivalis-induced proinflammatory responses of HGFs in a paracrine manner, suggesting that excess inflammatory responses to P. gingivalis in the gingival tissue are suppressed by LL-37 in vivo.


Infection and Immunity | 2007

Synthesis and characterization of a dipalmitoylated lipopeptide derived from paralogous lipoproteins of Mycoplasma pneumoniae.

Takeshi Into; Jun-ichi Dohkan; Megumi Inomata; Misako Nakashima; Ken-ichiro Shibata; Kenji Matsushita

ABSTRACT Genomic analysis of Mycoplasma pneumoniae revealed the existence of a large number of putative lipoprotein genes compared with the numbers in other bacteria. However, the pathogenic roles of M. pneumoniae lipoproteins are still obscure. In this study, we synthesized a lipopeptide (designated M. pneumoniae paralogous lipoprotein 1 [MPPL-1]) in which an S-dipalmitoylglyceryl cysteine was coupled to a peptide with a consensus sequence of a putative paralogous lipoprotein group characteristic of M. pneumoniae. The cytokine-inducing activity of MPPL-1 in human monocytic cells was much weaker (∼700-fold weaker) than that of the known mycoplasmal S-dipalmitoylated lipopeptide FSL-1 or MALP-2. MPPL-1 required Toll-like receptor (TLR2) to activate NF-κB-dependent gene transcription in HEK293 cells, although a 1,000-fold-larger amount of MPPL-1 was needed to exert activity similar to that of FSL-1 in the cells. TLR2-mediated recognition of MPPL-1 was synergistically upregulated by TLR6 but not by TLR1 or TLR10, although the activity was still weak. In addition, MPPL-1 did not antagonize FSL-1 recognition in human monocytic cells and TLR2/TLR6-expressing HEK293 cells. Thus, these results suggest that there is preferential selective recognition of diacylated lipopeptides due to the magnitude of an affinity with TLR2 and TLR6 and the roles of increased paralogous lipoprotein genes of M. pneumoniae in evasion of TLR2 recognition.


Journal of Periodontology | 2009

Degradation of vascular endothelial thrombomodulin by arginine- and lysine-specific cysteine proteases from Porphyromonas gingivalis.

Megumi Inomata; Yuichi Ishihara; Takashi Matsuyama; Takahisa Imamura; Ikuro Maruyama; Toshihide Noguchi; Kenji Matsushita

BACKGROUND The endothelial cell surface glycoprotein thrombomodulin (TM) inhibits vascular coagulation and inflammation via regulation of thrombin-mediated activation of protein C. Porphyromonas gingivalis is the major periodontopathic bacterium and has been found in vessel walls and atherosclerotic lesions in humans. P. gingivalis-derived cysteine proteases (gingipains) are known to enhance inflammatory and coagulant responses of vascular endothelial cells. However, it has not been elucidated whether gingipains affect vascular endothelial TM. METHODS Purified arginine-specific gingipains (Rgps) and lysine-specific gingipain (Kgp) from P. gingivalis were used to investigate the effects of gingipains on recombinant human TM by immunoblot analyses. Flow cytometry and activated protein C assay were carried out to examine the effects of gingipains on vascular endothelial cell surface TM. Immunohistochemistry was performed to investigate TM expression in microvascular endothelia in gingival tissues taken from patients with periodontitis. RESULTS Rgps and Kgp cleaved TM in vitro. Endothelial cell surface TM was also degraded by Rgps. Thrombin-mediated activation of protein C was reduced by Rgps through TM inactivation. Gingival microvascular endothelial TM was reduced in patients with periodontitis. CONCLUSIONS P. gingivalis gingipains induced the degradation and inactivation of endothelial TM, which may promote vascular coagulation and inflammation. In addition, in vivo relevance was demonstrated by reduced expression of TM in gingival microvascular endothelia in patients with periodontitis, which may be involved in the pathogenesis of periodontitis.

Collaboration


Dive into the Megumi Inomata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge