Megumi Kato-Itoh
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Megumi Kato-Itoh.
PLOS ONE | 2011
Sanae Hamanaka; Tomoyuki Yamaguchi; Toshihiro Kobayashi; Megumi Kato-Itoh; Satoshi Yamazaki; Hideyuki Sato; Ayumi Umino; Yukiko Wakiyama; Mami Arai; Makoto Sanbo; Masumi Hirabayashi; Hiromitsu Nakauchi
Background Recent progress in rat pluripotent stem cell technology has been remarkable. Particularly salient is the demonstration that embryonic stem cells (ESCs) in the rat (rESCs) can contribute to germline transmission, permitting generation of gene-modified rats as is now done using mouse ESCs (mESCs) or mouse induced pluripotent stem cells (iPSCs; miPSCs). However, determinations of whether rat iPSCs (riPSCs) can contribute to germ cells are not published. Here we report the germline competency of riPSCs. Methodology/Principal Findings We generated riPSCs by transducing three mouse reprogramming factors (Oct3/4, Klf4, and Sox2) into rat somatic cells, followed by culture in the presence of exogenous rat leukemia inhibitory factor (rLIF) and small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. We found that, like rESCs, our riPSCs can contribute to germline transmission. Furthermore we found, by immunostaining of testis from mouse-rat interspecific chimeras with antibody against mouse vasa homolog, that riPSCs can contribute to embryonic development with chimera formation in mice (rat-mouse interspecific chimeras) and to interspecific germlines. Conclusions/Significance Our data clearly demonstrate that using only three reprogramming factors (Oct3/4, Klf4, and Sox2) rat somatic cells can be reprogrammed into a ground state. Our generated riPSCs exhibited germline transmission in either rat-rat intraspecific or mouse-rat interspecific chimeras.
Nature | 2017
Tomoyuki Yamaguchi; Hideyuki Sato; Megumi Kato-Itoh; Teppei Goto; Hiromasa Hara; Makoto Sanbo; Naoaki Mizuno; Toshihiro Kobayashi; Ayaka Yanagida; Ayumi Umino; Yasunori Ota; Sanae Hamanaka; Hideki Masaki; Sheikh Tamir Rashid; Masumi Hirabayashi; Hiromitsu Nakauchi
Islet transplantation is an established therapy for diabetes. We have previously shown that rat pancreata can be created from rat pluripotent stem cells (PSCs) in mice through interspecies blastocyst complementation. Although they were functional and composed of rat-derived cells, the resulting pancreata were of mouse size, rendering them insufficient for isolating the numbers of islets required to treat diabetes in a rat model. Here, by performing the reverse experiment, injecting mouse PSCs into Pdx-1-deficient rat blastocysts, we generated rat-sized pancreata composed of mouse-PSC-derived cells. Islets subsequently prepared from these mouse–rat chimaeric pancreata were transplanted into mice with streptozotocin-induced diabetes. The transplanted islets successfully normalized and maintained host blood glucose levels for over 370 days in the absence of immunosuppression (excluding the first 5 days after transplant). These data provide proof-of-principle evidence for the therapeutic potential of PSC-derived islets generated by blastocyst complementation in a xenogeneic host.
Stem Cells and Development | 2012
Toshihiro Kobayashi; Megumi Kato-Itoh; Tomoyuki Yamaguchi; Chihiro Tamura; Makoto Sanbo; Masumi Hirabayashi; Hiromitsu Nakauchi
Recent discovery of a method for derivation and culture of germline-competent rat pluripotent stem cells (PSCs) enables generation of transgenic rats or knock-out rats via genetic modification of such PSCs. This opens the way to use rats, as is routine in mice, for analyses of gene functions or physiological features. In mouse or human, one widely used technique to express a gene of interest stably and ubiquitously is to insert that gene into the Rosa26 locus via gene targeting of PSCs. Rosa26 knock-in mice conditionally expressing a reporter or a toxin gene have contributed to tracing or ablation of specific cell lineages. We successfully identified a rat orthologue of the mouse Rosa26 locus. Insertion of tdTomato, a variant of red fluorescent protein, into the Rosa26 locus of PSCs of various rat strains allows ubiquitous expression of tdTomato. Through germline transmission of one Rosa26-tdTomato knock-in embryonic stem cell line, we also obtained tdTomato knock-in rats. These expressed tdTomato ubiquitously throughout their bodies, which indicates that the rat Rosa26 locus conserves functions of its orthologues in mouse and human. The new tools described here (targeting vectors, knock-in PSCs, and rats) should be useful for a variety of research using rats.
Biology of Reproduction | 2011
Mito Kanatsu-Shinohara; Megumi Kato-Itoh; Masahito Ikawa; Masanori Takehashi; Makoto Sanbo; Yuka Morioka; Takashi Tanaka; Hiroko Morimoto; Masumi Hirabayashi; Takashi Shinohara
Spermatogonial stem cells (SSCs) are the only stem cells in the body with germline potential, which makes them an attractive target for germline modification. We previously showed the feasibility of homologous recombination in mouse SSCs and produced knockout (KO) mice by exploiting germline stem (GS) cells, i.e., cultured spermatogonia with SSC activity. In this study, we report the successful homologous recombination in rat GS cells, which can be readily established by their ability to form germ cell colonies on culture plates whose surfaces are hydrophilic and neutrally charged and thus limit somatic cell binding. We established a drug selection protocol for GS cells under hypoxic conditions. The frequency of the homologous recombination of the Ocln gene was 4.2% (2 out of 48 clones). However, these GS cell lines failed to produce offspring following xenogeneic transplantation into mouse testes and microinsemination, suggesting that long-term culture and drug selection have a negative effect on GS cells. Nevertheless, our results demonstrate the feasibility of gene targeting in rat GS cells and pave the way toward the generation of KO rats.
Development | 2015
Hideki Masaki; Megumi Kato-Itoh; Ayumi Umino; Hideyuki Sato; Sanae Hamanaka; Toshihiro Kobayashi; Tomoyuki Yamaguchi; Ken Nishimura; Manami Ohtaka; Mahito Nakanishi; Hiromitsu Nakauchi
Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro differentiation, as ethical concerns preclude generation of human-human or human-animal chimeras. To circumvent this issue, we developed a functional assay utilizing interspecific blastocyst injection and in vitro culture (interspecies in vitro chimera assay) that enables the development and observation of embryos up to headfold stage. The assay uses mouse pre-implantation embryos and rat, monkey and human PSCs to create interspecies chimeras cultured in vitro to the early egg-cylinder stage. Intra- and interspecific chimera assays with rodent PSC lines were performed to confirm the consistency of results in vitro and in vivo. The behavior of chimeras developed in vitro appeared to recapitulate that of chimeras developed in vivo; that is, PSC-derived cells survived and were integrated into the epiblast of egg-cylinder-stage embryos. This indicates that the interspecific in vitro chimera assay is useful in evaluating the chimera-forming ability of rodent PSCs. However, when human induced PSCs (both conventional and naïve-like types) were injected into mouse embryos and cultured, some human cells survived but were segregated; unlike epiblast-stage rodent PSCs, they never integrated into the epiblast of egg-cylinder-stage embryos. These data suggest that the mouse-human interspecies in vitro chimera assay does not accurately reflect the early developmental potential/process of hPSCs. The use of evolutionarily more closely related species as host embryos might be necessary to evaluate the developmental potency of hPSCs. Summary: An approach to assess the chimera-forming ability of PSCs is developed and used to assess the developmental potential of rodent, monkey and human PSCs.
PLOS ONE | 2012
Tomoyuki Yamaguchi; Sanae Hamanaka; Akihide Kamiya; Motohito Okabe; Mami Kawarai; Yukiko Wakiyama; Ayumi Umino; Tomonari Hayama; Hideyuki Sato; Youn-Su Lee; Megumi Kato-Itoh; Hideki Masaki; Toshihiro Kobayashi; Satoshi Yamazaki; Hiromitsu Nakauchi
Fair comparison of reprogramming efficiencies and in vitro differentiation capabilities among induced pluripotent stem cell (iPSC) lines has been hampered by the cellular and genetic heterogeneity of de novo infected somatic cells. In order to address this problem, we constructed a single cassette all-in-one inducible lentiviral vector (Ai-LV) for the expression of three reprogramming factors (Oct3/4, Klf4 and Sox2). To obtain multiple types of somatic cells having the same genetic background, we generated reprogrammable chimeric mice using iPSCs derived from Ai-LV infected somatic cells. Then, hepatic cells, hematopoietic cells and fibroblasts were isolated at different developmental stages from the chimeric mice, and reprogrammed again to generate 2nd iPSCs. The results revealed that somatic cells, especially fetal hepatoblasts were reprogrammed 1200 times more efficiently than adult hepatocytes with maximum reprogramming efficiency reaching 12.5%. However, we found that forced expression of c-Myc compensated for the reduced reprogramming efficiency in aged somatic cells without affecting cell proliferation. All these findings suggest that the Ai-LV system enables us to generate a panel of iPSC clones derived from various tissues with the same genetic background, and thus provides an invaluable tool for iPSC research.
Cell Stem Cell | 2016
Hideki Masaki; Megumi Kato-Itoh; Yusuke Takahashi; Ayumi Umino; Hideyuki Sato; Keiichi Ito; Ayaka Yanagida; Toshinobu Nishimura; Tomoyuki Yamaguchi; Masumi Hirabayashi; Takumi Era; Kyle M. Loh; Sean M. Wu; Irving L. Weissman; Hiromitsu Nakauchi
Cell types more advanced in development than embryonic stem cells, such as EpiSCs, fail to contribute to chimeras when injected into pre-implantation-stage blastocysts, apparently because the injected cells undergo apoptosis. Here we show that transient promotion of cell survival through expression of the anti-apoptotic gene BCL2 enables EpiSCs and Sox17+ endoderm progenitors to integrate into blastocysts and contribute to chimeric embryos. Upon injection into blastocyst, BCL2-expressing EpiSCs contributed to all bodily tissues in chimeric animals while Sox17+ endoderm progenitors specifically contributed in a region-specific fashion to endodermal tissues. In addition, BCL2 expression enabled rat EpiSCs to contribute to mouse embryonic chimeras, thereby forming interspecies chimeras that could survive to adulthood. Our system therefore provides a method to overcome cellular compatibility issues that typically restrict chimera formation. Application of this type of approach could broaden the use of embryonic chimeras, including region-specific chimeras, for basic developmental biology research and regenerative medicine.
BMC Biology | 2016
Etsuko Tarusawa; Makoto Sanbo; Atsushi Okayama; Toshio Miyashita; Takashi Kitsukawa; Teruyoshi Hirayama; Takahiro Hirabayashi; Sonoko Hasegawa; Ryosuke Kaneko; Shunsuke Toyoda; Toshihiro Kobayashi; Megumi Kato-Itoh; Hiromitsu Nakauchi; Masumi Hirabayashi; Takeshi Yagi; Yumiko Yoshimura
BackgroundThe specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections.ResultsWe show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity.ConclusionsOur results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.
Molecular Reproduction and Development | 2012
Masumi Hirabayashi; Chihiro Tamura; Makoto Sanbo; Teppei Goto; Megumi Kato-Itoh; Toshihiro Kobayashi; Hiromitsu Nakauchi; Shinichi Hochi
This study was undertaken to generate rat offspring via tetraploid blastocyst complementation with embryonic stem (ES) cells. Tetraploid blastocysts were prepared by electrofusion of blastomeres from two‐cell stage embryos, and subsequent in vivo culture for 4 days. Microinjection into the tetraploid blastocoel of an inner cell mass isolated by immunosurgery resulted in the generation of rat offspring, suggesting the successful contribution of tetraploid blastocysts to their placenta. Tetraploid blastocyst complementation was attempted with a total of 4 ES cell lines (2 lines of female karyotype and 2 lines of male karyotype). In the rESWIv‐3i‐5 (XX) cell line, normal‐sized fetuses with heartbeats were harvested on E11.5 (12.1%), E12.5 (9.5%), and E13.5 (9.1%), but no viable fetuses were detected on E14.5. Similarly, use of the rESWIv‐3i‐1 (XX) cell line resulted in no viable fetus production on E14.5. Using the rESBLK2i‐1 (XY) cell line, viable fetuses were harvested not only on E11.5–E13.5 (2.6–5.5%), but also on E14.5 (3.0%). The transfer of a total of 487 tetraploid blastocysts complemented with rESBLK2i‐1 cells resulted in 256 implantation sites (52.6%) on E21.5, but no viable offspring was detected. Use of the rESBLK2i‐1/huKO (XY) cell line also resulted in no viable offspring production on E21.5. Analyses of the methylation pattern in differentially methylated regions and transcript level of genes that are imprinted in mice (H19, Meg3, Igf2r, Peg5, and Peg10) in the E14.5 conceptuses indicated a marked difference between the ES cell‐derived and control normal fetuses, but not between the tetraploid and control diploid placenta. Mol. Reprod. Dev. 79:402–412, 2012.
Stem Cells and Development | 2014
Masumi Hirabayashi; Teppei Goto; Chihiro Tamura; Makoto Sanbo; Hiromasa Hara; Megumi Kato-Itoh; Hideyuki Sato; Toshihiro Kobayashi; Hiromitsu Nakauchi; Shinichi Hochi
This study was undertaken to establish rat embryonic stem (ES) cells from parthenogenetically developing blastocysts. Ten blastocysts were prepared by treatment of ovulated rat oocytes with ionomycin and cycloheximide, and three alkaline phosphatase-positive ES cell lines were established using the N2B27 medium supplemented with mitogen activated protein kinase kinase inhibitor PD0325901, glycogen synthase kinase 3 inhibitor CHIR99021, rat leukemia inhibitory factor, and forskolin. Expression of stem cell marker genes (Oct-4, rNanog, Fgf-4, and Rex-1) was confirmed in all three ES cell lines by reverse transcriptase-polymerase chain reaction (RT-PCR). Combined bisulfite restriction analysis showed that the differentially methylated region locus of five imprinted genes (H19, Meg3IG, Igf2r, Peg5, and Peg10) in these ES cells remained to be demethylated or was hypomethylated, which was similar to that in control ES cells established from normal blastocysts. Characteristics of the parthenogenetic blastocyst-derived ES cells were successfully transmitted to the next generation through a chimeric rat for one of the three ES cell lines. This is the first report on germline-competent (genuine) ES cells derived from parthenogenetically developing rat blastocysts.