Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehdi Razavi is active.

Publication


Featured researches published by Mehdi Razavi.


Materials Science and Engineering: C | 2015

Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite

Mostafa Yazdimamaghani; Mehdi Razavi; Daryoosh Vashaee; Lobat Tayebi

A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds.


Materials Science and Engineering: C | 2014

In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Daryoosh Vashaee; Lobat Tayebi

The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi2O6) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants.


Materials Science and Engineering: C | 2015

In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications.

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Daryoosh Vashaee; Lobat Tayebi

Although magnesium (Mg) is a unique biodegradable metal which possesses mechanical property similar to that of the natural bone and can be an attractive material to be used as orthopedic implants, its quick corrosion rate restricts its actual clinical applications. To control its rapid degradation, we have modified the surface of magnesium implant using fluoridated hydroxyapatite (FHA: Ca10(PO4)6OH2-xFx) through the combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) techniques, which was presented in our previous paper. In this article, the biocompatibility examinations were conducted on the coated AZ91 magnesium alloy by implanting it into the greater trochanter area of rabbits. The results of the in vivo animal test revealed a significant enhancement in the biocompatibility of FHA/MAO coated implant compared to the uncoated one. By applying the FHA/MAO coating on the AZ91 implant, the amount of weight loss and magnesium ion release in blood plasma decreased. According to the histological results, the formation of the new bone increased and the inflammation decreased around the implant. In addition, the implantation of the uncoated AZ91 alloy accompanied by the release of hydrogen gas around the implant; this release was suppressed by applying the coated implant. Our study exemplifies that the surface coating of magnesium implant using a bioactive ceramic such as fluoridated hydroxyapatite may improve the biocompatibility of the implant to make it suitable as a commercialized biomedical product.


Colloids and Surfaces B: Biointerfaces | 2014

Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications.

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Batoul Hashemi Beni; Daryoosh Vashaee; Lobat Tayebi

Magnesium (Mg) alloys, owing to their biodegradability and good mechanical properties, have potential applications as biodegradable orthopedic implants. However, several poor properties including low corrosion resistance, mechanical stability and cytocompatibility have prevented their clinical application, as these properties may result in the sudden failure of the implants during the bone healing. In this research, nanostructured akermanite (Ca2MgSi2O7) powder was coated on the AZ91 Mg alloy through electrophoretic deposition (EPD) assisted micro arc oxidation (MAO) method to modify the properties of the alloy. The surface microstructure of coating, corrosion resistance, mechanical stability and cytocompatibility of the samples were characterized with different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical corrosion test, immersion test, compression test and cell culture test. The results showed that the nanostructured akermanite coating can improve the corrosion resistance, mechanical stability and cytocompatibility of the biodegradable Mg alloy making it a promising material to be used as biodegradable bone implants for orthopedic applications.


Physical Science International Journal | 2014

Biodegradation, Bioactivity and In vivo Biocompatibility Analysis of Plasma Electrolytic Oxidized (PEO) Biodegradable Mg Implants

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Daryoosh Vashaee; Lobat Tayebi

In this paper, a plasma electrolytic oxidation (PEO) coating was prepared on AZ91 magnesium (Mg) implant to improve its degradation resistance, bioactivity and biocompatibility. The phase composition and surface morphology of the samples were characterizedusing X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion rate and the bioactivity behavior of the samples were investigated via electrochemical measurements and immersion tests in simulated body fluid (SBF). The Original ResearchArticle


Surface Engineering | 2014

Microstructural and mechanical study of PCL coated Mg scaffolds

Mostafa Yazdimamaghani; Mehdi Razavi; Daryoosh Vashaee; Lobat Tayebi

Abstract In recent years, attention has been focused on the magnesium (Mg) as a promising material in biodegradable metallic scaffolds for bone tissue engineering. Since an orthopedic scaffold is supposed to repair and regenerate fractured bones, its mechanical integrity is vital throughout the healing process. In this study, a biocompatible polymeric layer made of polycaprolactone (PCL) in different concentrations of 3% w/v and 6% w/v was coated on the surface of Mg scaffolds. The structural characteristics and mechanical behaviour of the Mg scaffolds during the immersion in physiological saline solution (PSS) were investigated. According to our results, the PCL coating hindered the diminution of mechanical stability of scaffolds to provide adequate support for bone healing. Specifically, scaffold coated with 3% w/v and 6% w/v PCL demonstrated 24 and 100% improvement in the elastic modulus and 41 and 83% enhancement in compressive strength respectively, after 24 h immersion in PSS, compare to the uncoated scaffold. Thus, PCL coating of Mg scaffolds may be a promising approach in the development of mechanically stable bone scaffolds.


Materials Science and Engineering: C | 2017

Porous magnesium-based scaffolds for tissue engineering

Mostafa Yazdimamaghani; Mehdi Razavi; Daryoosh Vashaee; Keyvan Moharamzadeh; Aldo R. Boccaccini; Lobat Tayebi

Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail.


Materials Science and Engineering: C | 2017

A current overview of materials and strategies for potential use in maxillofacial tissue regeneration.

Hossein E. Jazayeri; Mohammadreza Tahriri; Mehdi Razavi; Kimia Khoshroo; Farahnaz Fahimipour; Erfan Dashtimoghadam; Luis Eduardo Almeida; Lobat Tayebi

Tissue regeneration is rapidly evolving to treat anomalies in the entire human body. The production of biodegradable, customizable scaffolds to achieve this clinical aim is dependent on the interdisciplinary collaboration among clinicians, bioengineers and materials scientists. While bone grafts and varying reconstructive procedures have been traditionally used for maxillofacial defects, the goal of this review is to provide insight on all materials involved in the progressing utilization of the tissue engineering approach to yield successful treatment outcomes for both hard and soft tissues. In vitro and in vivo studies that have demonstrated the restoration of bone and cartilage tissue with different scaffold material types, stem cells and growth factors show promise in regenerative treatment interventions for maxillofacial defects. The repair of the temporomandibular joint (TMJ) disc and mandibular bone were discussed extensively in the report, supported by evidence of regeneration of the same tissue types in different medical capacities. Furthermore, in addition to the thorough explanation of polymeric, ceramic, and composite scaffolds, this review includes the application of biodegradable metallic scaffolds for regeneration of hard tissue. The purpose of compiling all the relevant information in this review is to lay the foundation for future investigation in materials used in scaffold synthesis in the realm of oral and maxillofacial surgery.


Materials Science and Engineering: C | 2016

Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications

Fatemeh Heidari; Mehdi Razavi; M.E. Bahrololoom; Reza Bazargan-Lari; Daryoosh Vashaee; Hari Kotturi; Lobat Tayebi

Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan.


Journal of Biomedical Materials Research Part A | 2015

In vivo study of nanostructured akermanite/PEO coating on biodegradable magnesium alloy for biomedical applications

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Daryoosh Vashaee; Lobat Tayebi

The major issue for biodegradable magnesium alloys is the fast degradation and release of hydrogen gas. In this article, we aim to overcome these disadvantages by using a surface modified magnesium implant. We have recently coated AZ91 magnesium implants by akermanite (Ca2 MgSi2 O7 ) through the combined electrophoretic deposition (EPD) and plasma electrolytic oxidation (PEO) methods. In this work, we performed the in vitro and in vivo examinations of these coated implants using L-929 cell line and rabbit animal model. The in vitro study confirmed the higher cytocompatibility of the coated implants compare to the uncoated ones. For the in vivo experiment, the rod samples were implanted into the greater trochanter of rabbits and monitored for two months. The results indicated a noticeable biocompatibility improvement of the coated implants which includes slower implant weight loss, reduction in Mg ion released from the coated samples in the blood plasma, lower release of hydrogen bubbles, increase in the amount of bone formation and ultimately lower bone inflammation after the surgery according to the histological images. Our data exemplifies that the proper surface treatment of the magnesium implants can improve their biocompatibility under physiological conditions to make them applicable in clinical uses.

Collaboration


Dive into the Mehdi Razavi's collaboration.

Top Co-Authors

Avatar

Lobat Tayebi

Isfahan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Daryoosh Vashaee

Oklahoma State University–Tulsa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hari Kotturi

University of Central Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Radi Masri

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge