Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehti Koklu is active.

Publication


Featured researches published by Mehti Koklu.


6th AIAA Flow Control Conference 2012 | 2012

Numerical Simulation of Fluidic Actuators for Flow Control Applications

Veer N. Vatsa; Mehti Koklu; I. Wygnanski; Ehab Fares

Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.


43rd AIAA Fluid Dynamics Conference | 2013

Sweeping Jet Actuator in a Quiescent Environment

Mehti Koklu; LaTunia G. Pack Melton

This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).


7th AIAA Flow Control Conference | 2014

Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

Mehti Koklu; Lewis R. Owens

Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.


54th AIAA Aerospace Sciences Meeting | 2016

Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

LaTunia G. Pack Melton; Mehti Koklu

Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external diuser walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.


8th AIAA Flow Control Conference | 2016

Sweeping Jet Optimization Studies

LaTunia G. Pack Melton; Mehti Koklu; Marlyn Y. Andino; John C. Lin; Louis M. Edelman

Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but dierent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wings 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.


55th AIAA Aerospace Sciences Meeting | 2017

High Lift Common Research Model for Wind Tunnel Testing: An Active Flow Control Perspective

John C. Lin; LaTunia G. Pack Melton; Sally A. Viken; Marlyn Y. Andino; Mehti Koklu; Judith Hannon; Veer N. Vatsa

This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.


AIAA Journal | 2015

The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

Mehti Koklu

A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, and size. Surface pressure measurements and surface oilflow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuators jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets for this ramp configuration. The results also suggest that an actuator with a wider jet spreading (110 vs. 70 degrees) placed closer (2.3 vs. 7 boundary layer thickness upstream) to the flow separation location provides better performance. Different actuator sizes obtained by scaling down the actuator geometry produced different jet spreading. Scaling down the actuator (based on the throat dimensions) from 6.35 × 3.18 mm to 3.81 × 1.9 mm resulted in similar flow control performance; however, scaling down the actuator further to 1.9 × 0.95 mm reduced the actuator efficiency by reducing the jet spreading considerably. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.


2018 AIAA Aerospace Sciences Meeting | 2018

A Numerical and Experimental Investigation of Flow Separation Control over a Wall-Mounted Hump Model

Mehti Koklu

Numerical simulations and wind tunnel experiments were performed to investigate flow separation and its control over a wall-mounted hump model. Three-dimensional, unsteady fluid dynamic simulations were used to capture the relevant flow physics of unsteady flow separation and its control via active and passive flow control methods. Surface pressure measurements and surface oilflow visualization were obtained in the experiments. Current measurements documented a considerably thinner incoming boundary layer, but similar pressure distribution, compared to the reference data reported in the CFD Validation (CFDVAL 2004) Experiments. Consistent with the data available in the literature, numerical simulations predicted a longer separation bubble, which manifested itself as a shift in the pressure distributions. Streamwise vortices generated by passive vortex generators increased the suction pressure and provided substantial pressure recovery. Numerical simulations of vortex generators qualitatively predicted the effects of control, and revealed patterns of attached/separated flow regions. On the other hand, active flow control using steady discrete jets reduced, but was not able to eliminate, flow separation for the tested configuration. Although the major disagreement between the numerical and experimental results was in the pressure recovery region due to the inaccurate prediction of separation bubble, the relative pressure recoveries from the baselines were comparable. Surface oilflow visualization and simulated surface streamlines were qualitatively in good agreement revealing the key flow features.


2018 Flow Control Conference | 2018

Steady and Unsteady Excitation of Separated Flow over the NASA Hump Model

Mehti Koklu

Separated flow and its control over the NASA hump model were investigated at subsonic speeds. Three-dimensional, unsteady fluid dynamic simulations were supplemented by wind tunnel measurements. Flow control was implemented by means of spatially distributed discrete jets operating in steady and unsteady modes. The effects of excitation amplitude and frequency were studied numerically and experimentally. Several integral parameters were explored as quality metrics. In addition to the existing ones, two new integral parameters, which are slightly modified versions of the normal force and moment coefficients, were introduced. These two parameters together with pressure drag coefficient were found to be well correlated with the flow control and used in the performance evaluation of different flow control methods including, zero net mass flux actuators, steady suction, sweeping jet actuators, and the currently studied steady and unsteady excitations. For the cases tested, it was found that the unsteady excitation is superior to the steady excitation and slightly better than the sweeping jet actuators whereas the steady suction was found to be the most effective. Although the numerical simulations overpredict the separation bubble, these simulations capture the salient features of flow separation control and hence help us to understand the effect of steady/unsteady excitation on the separated flow.


AIAA Journal | 2016

Effect of a Coanda Extension on the Performance of a Sweeping-Jet Actuator

Mehti Koklu

Collaboration


Dive into the Mehti Koklu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Lin

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge