Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehul Ganatra is active.

Publication


Featured researches published by Mehul Ganatra.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


PLOS Biology | 2005

The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode

Jeremy M. Foster; Mehul Ganatra; Ibrahim H. Kamal; Jennifer Ware; Kira S. Makarova; Natalia Ivanova; Anamitra Bhattacharyya; Vinayak Kapatral; Sanjay Kumar; Janos Posfai; Tamas Vincze; Jessica Ingram; Laurie S. Moran; Alla Lapidus; Marina V. Omelchenko; Nikos C. Kyrpides; Elodie Ghedin; Shiliang Wang; Eugene Goltsman; Victor Joukov; Olga Ostrovskaya; Kiryl Tsukerman; Mikhail Mazur; Donald G. Comb; Eugene V. Koonin; Barton E. Slatko

Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachias principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.


PLOS Neglected Tropical Diseases | 2009

The Heme Biosynthetic Pathway of the Obligate Wolbachia Endosymbiont of Brugia malayi as a Potential Anti-filarial Drug Target

Bo Wu; Jacopo Novelli; Jeremy M. Foster; Romualdas Vaisvila; Leslie Conway; Jessica Ingram; Mehul Ganatra; Anita U. Rao; Iqbal Hamza; Barton E. Slatko

Background Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs. Methods and Findings Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP), which targets ferrochelatase (FC, the last step). Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a ∼600-fold difference in drug sensitivities to succinyl acetone (SA) between Wolbachia and human 5′-aminolevulinic acid dehydratase (ALAD, the second step). Similarly, Escherichia coli hemH (FC) deficient strains transformed with human and Wolbachia FC homologues showed significantly different sensitivities to NMMP. This approach enables functional complementation in E. coli heme deficient mutants as an alternative E. coli-based method for drug screening. Conclusions Our studies indicate that the heme biosynthetic genes in the Wolbachia of B. malayi (wBm) might be essential for the filarial host survival. In addition, the results suggest they are likely candidate drug targets based upon significant differences in phylogenetic distance, biochemical properties and sensitivities to heme biosynthesis inhibitors, as compared to their human homologues.


Parasitology | 1999

Helminth genome analysis: The current status of the filarial and schistosome genome projects

Steven Williams; David A. Johnston; Martin Aslett; LouAnn Bierwert; Mark Blaxter; Jennifer Daub; Jeremy M. Foster; Mehul Ganatra; David B. Guiliano; Susan Haynes; Kunthala Jayaraman; Ibrahim H. Kamal; K. Kannan; Sandra J. Laney; Wen Li; Michelle Lizotte-Waniewski; Wenhong Lu; Nithyakalyani Raghavan; Reda M. R. Ramzy; R. V. Rao; Lori Saunders; Alan L. Scott; Barton E. Slatko; Taniawati Supali; Jennifer Ware; Vasco Azevedo; Paul J. Brindley; Guilherme Correa De Oliviera; Zheng Feng; Glória Regina Franco

Genome projects for the parasitic helminths Brugia malayi (a representative filarial nematode) and Schistosoma were initiated in 1995 by the World Health Organization with the ultimate objectives of identifying new vaccine candidates and drug targets and of developing low resolution genome maps. Because no genetic maps are available, and very few genes have been characterized from either parasite group, the first goal of both Initiatives has been to catalogue new genes for future placement on chromosome and physical maps. These genes have been identified by the expressed sequence tag (EST) approach, utilising cDNA libraries constructed from diverse life cycle stages. To date, the Initiatives have deposited over 16,000 Brugia ESTs and nearly 8000 Schistosoma ESTs in Genbanks dbEST database, corresponding to 6000 and over 3600 genes respectively (33% of Brugias estimated gene compliment, 18-24% of that of Schistosoma). Large fragment, genomic libraries have been constructed in BAC and YAC vectors for studies of genomic organization and for physical and chromosome mapping, and public, hypertext genomic databases have been established to facilitate data access. We present a summary of progress within the helminth genome initiatives and give several examples of important gene discoveries and future applications of these data.


Applied and Environmental Microbiology | 2007

Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains

Jeremiah D. Read; Paul A. Colussi; Mehul Ganatra; Christopher H. Taron

ABSTRACT The yeast Kluyveromyces lactis has been extensively used as a host for heterologous protein expression. A necessary step in the construction of a stable expression strain is the introduction of an integrative expression vector into K. lactis cells, followed by selection of transformed strains using either medium containing antibiotic (e.g., G418) or nitrogen-free medium containing acetamide. In this study, we show that selection using acetamide yields K. lactis transformant populations nearly completely comprised of strains bearing multiple tandem insertions of the expression vector pKLAC1 at the LAC4 chromosomal locus, whereas an average of 16% of G418-selected transformants are multiply integrated. Additionally, the average copy number within transformant populations doubled when acetamide was used for selection compared to G418. Finally, we demonstrate that the high frequency of multicopy integration associated with using acetamide selection can be exploited to rapidly construct expression strains that simultaneously produce multiple heterologous proteins or multisubunit proteins, such as Fab antibodies.


Parasitology Research | 2009

The Wolbachia endosymbiont of Brugia malayi has an active phosphoglycerate mutase: a candidate target for anti-filarial therapies

Jeremy M. Foster; Sylvine Raverdy; Mehul Ganatra; Paul A. Colussi; Christopher H. Taron; Clotilde K. S. Carlow

Phosphoglycerate mutases (PGM) interconvert 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. A putative cofactor-independent phosphoglycerate mutase gene (iPGM) was identified in the genome sequence of the Wolbachia endosymbiont from the filarial nematode, Brugia malayi (wBm). Since iPGM has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase (dPGM) found in mammals, it may represent an attractive Wolbachia drug target. In the present study, wBm–iPGM cloned and expressed in Escherichia coli was mostly insoluble and inactive. However, the protein was successfully produced in the yeast Kluyveromyces lactis and the purified recombinant wBm–iPGM showed typical PGM activity. Our results provide a foundation for further development of wBm–iPGM as a promising new drug target for novel anti-filarial therapies that selectively target the endosymbiont.


Fems Yeast Research | 2011

A set of aspartyl protease-deficient strains for improved expression of heterologous proteins in Kluyveromyces lactis

Mehul Ganatra; Saulius Vainauskas; Julia M. Hong; Troy E. Taylor; John-Paul M. Denson; Dominic Esposito; Jeremiah D. Read; Hana Schmeisser; Kathryn C. Zoon; James L. Hartley; Christopher H. Taron

Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain.


Molecular and Biochemical Parasitology | 2004

A genome sequence survey of the filarial nematode Brugia malayi: repeats, gene discovery, and comparative genomics.

Claire Whitton; Jennifer Daub; Michael A. Quail; Neil Hall; Jeremy M. Foster; Jennifer Ware; Mehul Ganatra; Barton E. Slatko; Bart Barrell; Mark Blaxter


International Journal for Parasitology | 2004

Construction of bacterial artificial chromosome libraries from the parasitic nematode Brugia malayi and physical mapping of the genome of its Wolbachia endosymbiont.

Jeremy M. Foster; Sanjay Kumar; Mehul Ganatra; Ibrahim H. Kamal; Jennifer Ware; Jessica Ingram; Jesse Pope-Chappell; David B. Guiliano; Claire Whitton; Jennifer Daub; Mark Blaxter; Barton E. Slatko


BioTechniques | 2001

Hybridization to high-density filter arrays of a Brugia malayi BAC library with biotinylated oligonucleotides and PCR products.

Jeremy M. Foster; Ibrahim H. Kamal; J. Daub; M. C. Swan; Jessica Ingram; Mehul Ganatra; Jennifer Ware; D. Guiliano; A. Aboobaker; Laurie S. Moran; Mark Blaxter; Barton E. Slatko

Collaboration


Dive into the Mehul Ganatra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Blaxter

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher H. Taron

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge