Mei G. Sun
United States Army Medical Research Institute of Infectious Diseases
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mei G. Sun.
Nature Methods | 2015
Maria G Paez-Segala; Mei G. Sun; Gleb Shtengel; Sarada Viswanathan; Michelle A. Baird; John J. Macklin; Ronak Patel; John R. Allen; Elizabeth S. Howe; Grzegorz Piszczek; Harald F. Hess; Michael W. Davidson; Yalin Wang; Loren L. Looger
Fluorescent proteins facilitate a variety of imaging paradigms in live and fixed samples. However, they lose their fluorescence after heavy fixation, hindering applications such as correlative light and electron microscopy (CLEM). Here we report engineered variants of the photoconvertible Eos fluorescent protein that fluoresce and photoconvert normally in heavily fixed (0.5–1% OsO4), plastic resin–embedded samples, enabling correlative super-resolution fluorescence imaging and high-quality electron microscopy.Fluorescent proteins facilitate a variety of imaging paradigms in live and fixed samples. However, they cease to function following heavy fixation, hindering advanced applications such as correlative light and electron microscopy. Here we report engineered variants of the photoconvertible Eos fluorescent protein that function normally in heavily fixed (0.5–1% OsO4), plastic resin-embedded samples, enabling correlative super-resolution fluorescence imaging and high-quality electron microscopy.
Nature microbiology | 2017
Xiankun Zeng; Candace D. Blancett; Keith A Koistinen; Christopher W. Schellhase; Jeremy J. Bearss; Sheli R. Radoshitzky; Shelley P. Honnold; Taylor B. Chance; Travis K. Warren; Jeffrey W. Froude; Kathleen A. Cashman; John M. Dye; Sina Bavari; Gustavo Palacios; Jens H. Kuhn; Mei G. Sun
Ebola virus (EBOV) persistence in asymptomatic humans and Ebola virus disease (EVD) sequelae have emerged as significant public health concerns since the 2013–2016 EVD outbreak in Western Africa. Until now, studying how EBOV disseminates into and persists in immune-privileged sites was impossible due to the absence of a suitable animal model. Here, we detect persistent EBOV replication coinciding with systematic inflammatory responses in otherwise asymptomatic rhesus monkeys that had survived infection in the absence of or after treatment with candidate medical countermeasures. We document progressive EBOV dissemination into the eyes, brain and testes through vascular structures, similar to observations in humans. We identify CD68+ cells (macrophages/monocytes) as the cryptic EBOV reservoir cells in the vitreous humour and its immediately adjacent tissue, in the tubular lumina of the epididymides, and in foci of histiocytic inflammation in the brain, but not in organs typically affected during acute infection. In conclusion, our data suggest that persistent EBOV infection in rhesus monkeys could serve as a model for persistent EBOV infection in humans, and we demonstrate that promising candidate medical countermeasures may not completely clear EBOV infection. A rhesus monkey model may lay the foundation to study EVD sequelae and to develop therapies to abolish EBOV persistence.
Nature Protocols | 2017
Benjamin G. Kopek; Maria G Paez-Segala; Gleb Shtengel; Kem A. Sochacki; Mei G. Sun; Yalin Wang; C. Shan Xu; Schuyler B van Engelenburg; Justin W. Taraska; Loren L. Looger; Harald F. Hess
Our groups have recently developed related approaches for sample preparation for super-resolution imaging within endogenous cellular environments using correlative light and electron microscopy (CLEM). Four distinct techniques for preparing and acquiring super-resolution CLEM data sets for aldehyde-fixed specimens are provided, including Tokuyasu cryosectioning, whole-cell mount, cell unroofing and platinum replication, and resin embedding and sectioning. The choice of the best protocol for a given application depends on a number of criteria that are discussed in detail. Tokuyasu cryosectioning is relatively rapid but is limited to small, delicate specimens. Whole-cell mount has the simplest sample preparation but is restricted to surface structures. Cell unroofing and platinum replication creates high-contrast, 3D images of the cytoplasmic surface of the plasma membrane but is more challenging than whole-cell mount. Resin embedding permits serial sectioning of large samples but is limited to osmium-resistant probes, and is technically difficult. Expected results from these protocols include super-resolution localization (∼10–50 nm) of fluorescent targets within the context of electron microscopy ultrastructure, which can help address cell biological questions. These protocols can be completed in 2–7 d, are compatible with a number of super-resolution imaging protocols, and are broadly applicable across biology.
PLOS Pathogens | 2016
Sheli R. Radoshitzky; Gianluca Pegoraro; Xiǎolì Chī; Lián Dǒng; Chih-Yuan Chiang; Lucas Jozwick; Jeremiah C. Clester; Christopher L. Cooper; Duane Courier; David P. Langan; Knashka Underwood; Kathleen A. Kuehl; Mei G. Sun; Yíngyún Caì; Shuǐqìng Yú; Robin Burk; Rouzbeh Zamani; Krishna P. Kota; Jens H. Kuhn; Sina Bavari
Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1–PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling.
Scientific Reports | 2018
Timothy K. Cooper; Louis Huzella; Joshua C. Johnson; Oscar Rojas; Sri Yellayi; Mei G. Sun; Sina Bavari; Amanda Bonilla; Randy Hart; Peter B. Jahrling; Jens H. Kuhn; Xiankun Zeng
Survivors of Ebola virus infection may become subclinically infected, but whether animal models recapitulate this complication is unclear. Using histology in combination with immunohistochemistry and in situ hybridization in a retrospective review of a guinea pig confirmation-of-virulence study, we demonstrate for the first time Ebola virus infection in hepatic oval cells, the endocardium and stroma of the atrioventricular valves and chordae tendinae, satellite cells of peripheral ganglia, neurofibroblasts and Schwann cells of peripheral nerves and ganglia, smooth muscle cells of the uterine myometrium and vaginal wall, acini of the parotid salivary glands, thyroid follicular cells, adrenal medullary cells, pancreatic islet cells, endometrial glandular and surface epithelium, and the epithelium of the vagina, penis and, prepuce. These findings indicate that standard animal models for Ebola virus disease are not as well-described as previously thought and may serve as a stepping stone for future identification of potential sites of virus persistence.
Emerging microbes & infections | 2018
Jun Liu; Brandon A. Kline; Tara A. Kenny; Darci R. Smith; Veronica Soloveva; Brett Beitzel; Song Pang; Stephen Lockett; Harald F. Hess; Gustavo Palacios; Jens H. Kuhn; Mei G. Sun; Xiankun Zeng
Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.
Journal of Virological Methods | 2017
Candace D. Blancett; David P. Fetterer; Keith A Koistinen; Elaine M. Morazzani; Mitchell K. Monninger; Ashley E. Piper; Kathleen A. Kuehl; Brian J. Kearney; Sarah L. Norris; Cynthia A. Rossi; Pamela J. Glass; Mei G. Sun
A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the methods accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter.
Journal of Virological Methods | 2016
Mitchell K. Monninger; Chrystal A. Nguessan; Candace D. Blancett; Kathleen A. Kuehl; Cynthia A. Rossi; Scott P. Olschner; Priscilla L. Williams; Steven L. Goodman; Mei G. Sun
Transmission electron microscopy can be used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. In a transmission electron microscope (TEM), the image is created by passing an electron beam through a specimen with contrast generated by electron scattering from dense elements in the specimen. Viruses do not normally contain dense elements, so a negative stain that places dense heavy metal salts around the sample is added to create a dark border. To prepare a virus sample for a negative stain transmission electron microscopy, a virus suspension is applied to a TEM grid specimen support, which is a 3mm diameter fragile specimen screen coated with a few nanometers of plastic film. Then, deionized (dI) water rinses and a negative stain solution are applied to the grid. All infectious viruses must be handled in a biosafety cabinet (BSC) and many require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL) 3 and 4 is especially challenging because the support grids are small, fragile, and easily moved by air currents. In this study we evaluated a new device for negative staining viruses called mPrep/g capsule. It is a capsule that holds up to two TEM grids during all processing steps and for storage after staining is complete. This study reports that the mPrep/g capsule method is valid and effective to negative stain virus specimens, especially in high containment laboratory environments.
Archive | 2018
Robert G. Lowen; Thomas Bocan; Christopher D. Kane; Lisa H. Cazares; Krishna P. Kota; Jason T. Ladner; Farooq Nasar; Louise Pitt; Darci R. Smith; Veronica Soloveva; Mei G. Sun; Xiankun Zeng; Sina Bavari
The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.
Journal of Visualized Experiments | 2017
Candace D. Blancett; Mitchell K. Monninger; Chrystal A. Nguessan; Kathleen A. Kuehl; Cynthia A. Rossi; Scott P. Olschner; Priscilla L. Williams; Steven L. Goodman; Mei G. Sun
Transmission electron microscopy (TEM) is used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. Most biological materials do not contain dense elements capable of scattering electrons to create an image; therefore, a negative stain, which places dense heavy metal salts around the sample, is required. In order to visualize viruses in suspension under the TEM they must be applied to small grids coated with a transparent surface only nanometers thick. Due to their small size and fragility, these grids are difficult to handle and easily moved by air currents. The thin surface is easily damaged, leaving the sample difficult or impossible to image. Infectious viruses must be handled in a biosafety cabinet (BSC) and some require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL)-3 and -4 is especially challenging because these environments are more turbulent and technicians are required to wear personal protective equipment (PPE), which decreases dexterity. In this study, we evaluated a new device to assist in negative staining viruses in biocontainment. The device is a capsule that works as a specialized pipette tip. Once grids are loaded into the capsule, the user simply aspirates reagents into the capsule to deliver the virus and stains to the encapsulated grid, thus eliminating user handling of grids. Although this technique was designed specifically for use in BSL-3 or -4 biocontainment, it can ease sample preparation in any lab environment by enabling easy negative staining of virus. This same method can also be applied to prepare negative stained TEM specimens of nanoparticles, macromolecules and similar specimens.
Collaboration
Dive into the Mei G. Sun's collaboration.
United States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputs