Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mei Ming is active.

Publication


Featured researches published by Mei Ming.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C

Mei Ming; Christopher R. Shea; Xiumei Guo; Xiaoling Li; Keyoumars Soltani; Weinong Han; Yu-Ying He

Disruption of the nucleotide excision repair (NER) pathway by mutations can cause xeroderma pigmentosum, a syndrome predisposing affected individuals to development of skin cancer. The xeroderma pigmentosum C (XPC) protein is essential for initiating global genome NER by recognizing the DNA lesion and recruiting downstream factors. Here we show that inhibition of the deacetylase and longevity factor SIRT1 impairs global genome NER through suppressing the transcription of XPC in a SIRT1 deacetylase-dependent manner. SIRT1 enhances XPC expression by reducing AKT-dependent nuclear localization of the transcription repressor of XPC. Finally, we show that SIRT1 levels are significantly reduced in human skin tumors from Caucasian patients, a population at highest risk. These findings suggest that SIRT1 acts as a tumor suppressor through its role in DNA repair.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Regulation of cell proliferation and migration by p62 through stabilization of Twist1

Lei Qiang; Baozhong Zhao; Mei Ming; Ning Wang; Tong-Chuan He; Seungmin Hwang; Andrew Thorburn; Yu-Ying He

Significance The selective autophagy substrate p62 has been shown to regulate inflammatory and redox pathways in tumorigenesis following autophagy suppression. Here we have elucidated the critical role of p62 in promoting cell proliferation and migration in vitro and tumor growth and metastasis in vivo through its molecular interaction with the oncogenic transcription factor Twist1. Our findings suggest that targeting the interaction between p62 and Twist1 has potential for cancer prevention and therapy. The selective autophagy substrate p62 serves as a molecular link between autophagy and cancer. Suppression of autophagy causes p62 accumulation and thereby contributes to tumorigenesis. Here we demonstrate that autophagy deficiency promotes cell proliferation and migration through p62-dependent stabilization of the oncogenic transcription factor Twist1. p62 binds to Twist1 and inhibits degradation of Twist1. In mice, p62 up-regulation promotes tumor cell growth and metastasis in a Twist1-dependent manner. Our findings demonstrate that Twist1 is a key downstream effector of p62 in regulation of cell proliferation and migration and suggest that targeting p62-mediated Twist1 stabilization is a promising therapeutic strategy for prevention and treatment of cancer.


Cancer Letters | 2012

PTEN in DNA damage repair

Mei Ming; Yu-Ying He

The ability of DNA repair in a cell is vital to its genomic integrity and thus to the normal functioning of an organism. Phosphatase and tensin homolog (PTEN) is a well-established tumor suppressor gene that induces apoptosis and controls cell growth by inhibiting the PI3K/AKT pathway. In various human cancers, PTEN is frequently found to be mutated, deleted, or epigenetically silenced. Recent new findings have demonstrated that PTEN also plays a critical role in DNA damage repair and DNA damage response. This review summarizes the recent progress in the function of PTEN in DNA damage repair, especially in double strand break repair and nucleotide excision repair. In addition, we will discuss the role of PTEN in DNA damage response through its interaction with the Chk1 and p53 pathways. We will focus on the newly discovered mechanisms and the potential implications in cancer prevention and therapeutic intervention.


Journal of Biological Chemistry | 2013

Autophagy Controls p38 Activation to Promote Cell Survival under Genotoxic Stress

Lei Qiang; Chunli Wu; Mei Ming; Benoit Viollet; Yu-Ying He

Background: The role of autophagy in genotoxic stress remains poorly understood. Results: Autophagy deficiency sensitizes cells to UVB-induced apoptosis through p62-dependent p38 activation. Conclusion: Inhibition of autophagy promotes apoptosis following UVB damage by increasing p38 activation. Significance: These findings identify the vital role of autophagy in cell survival under genotoxic stress and suggest the function of autophagy in cancer pathogenesis. Deregulated cell survival under carcinogen-induced genotoxic stress is vital for cancer development. One of the cellular processes critical for cell survival under metabolic stress and energy starvation is autophagy, a catabolic process involved in capture and delivery of cytoplasmic components to lysosomes for degradation. However, the role of autophagy following carcinogen-induced genotoxic stress remains unclear. Here we show that UVB radiation, a known human skin carcinogen that operates by causing DNA damage, induced autophagy and autophagic flux through AMP kinase activation. Autophagy deficiency sensitizes cells to UVB-induced apoptosis through increasing p62-dependent activation of the stress-activated protein kinase p38. Compared with normal human skin, autophagy was activated in human squamous cell carcinomas, in association with decreased phosphorylation of p38, and increased phosphorylation of ATR and formation of γ-H2AX, two markers of DNA damage response. Our results demonstrate that autophagy promotes cell survival through suppressing p62-mediated p38 activation and thus may facilitate tumor development under genotoxic stress. These findings suggest that autophagy plays an oncogenic role in epithelial carcinogenesis by promoting cell survival.


Cancer Research | 2011

PTEN Positively Regulates UVB-Induced DNA Damage Repair

Mei Ming; Li Feng; Christopher R. Shea; Keyoumars Soltani; Baozhong Zhao; Weinong Han; Robert C. Smart; Carol S. Trempus; Yu-Ying He

Nonmelanoma skin cancer is the most common cancer in the United States, where DNA-damaging ultraviolet B (UVB) radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papilloma and squamous cell carcinoma (SCC), levels of PTEN were reduced compared with skin lacking these lesions. Likewise, there was a reduction in PTEN levels in human premalignant actinic keratosis and malignant SCCs, supporting a key role for PTEN in human skin cancer formation and progression. PTEN downregulation impaired the capacity of global genomic nucleotide excision repair (GG-NER), a critical mechanism for removing UVB-induced mutagenic DNA lesions. In contrast to the response to ionizing radiation, PTEN downregulation prolonged UVB-induced growth arrest and increased the activation of the Chk1 DNA damage pathway in an AKT-independent manner, likely due to reduced DNA repair. PTEN loss also suppressed expression of the key GG-NER protein xeroderma pigmentosum C (XPC) through the AKT/p38 signaling axis. Reconstitution of XPC levels in PTEN-inhibited cells restored GG-NER capacity. Taken together, our findings define PTEN as an essential genomic gatekeeper in the skin through its ability to positively regulate XPC-dependent GG-NER following DNA damage.


Oncogene | 2010

UVB induced ERK/AKT-dependent PTEN suppression promotes survival of epidermal keratinocytes

Mei Ming; Weinong Han; Jessica Maddox; Keyoumars Soltani; Christopher R. Shea; Diane M. Freeman; Yu-Ying He

Ultraviolet (UV) radiation in sunlight is the major environmental cause of skin cancer. PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a proven critical tumor suppressor. We report here that UVB downregulates PTEN in primary human keratinocytes, human HaCaT keratinocytes and mouse skin. As compared with normal skin, PTEN levels are reduced in human actinic keratosis, a precancerous skin lesion caused by solar UV. PTEN downregulation is mediated by two mechanisms: (1) PTEN is cleaved by active caspase in apoptotic cells in which AKT activation is reduced; and (2) PTEN transcription is suppressed in surviving cells, and this suppression is independent of caspase activation and occurs in parallel with increased ERK and AKT activation. We report here that the combination of ERK and AKT activation is crucial for PTEN suppression in surviving cells following UVB irradiation. AKT activation is higher in UVB-irradiated surviving cells as compared with unirradiated cells. The ERK and AKT pathways are involved in sustaining PTEN suppression in UVB-exposed cells. Increasing PTEN expression enhances apoptosis of keratinocytes in response to UVB irradiation. Our findings indicate that (1) UVB radiation suppresses PTEN expression in keratinocytes; and (2) the ERK/AKT/PTEN axis may form a positive feedback loop following UVB irradiation. Our identification of PTEN as a critical molecular target of UVB provides new insights into the pathogenesis of skin cancer.


Journal of Biological Chemistry | 2010

Immunosuppressive Cyclosporin A Activates AKT in Keratinocytes through PTEN Suppression IMPLICATIONS IN SKIN CARCINOGENESIS

Weinong Han; Mei Ming; Tong-Chuan He; Yu-Ying He

Non-melanoma skin cancer, the most common neoplasia after solid organ transplantation, causes serious morbidity and mortality and is related to sun exposure. Cyclosporin A (CsA) has been used widely to prevent rejection in organ transplantation. The mechanism of CsA action in causing cancer was thought to be well understood via immunosuppression. Here, we show that CsA promotes primary skin tumor growth in immune-deficient mice and keratinocyte growth in vitro. In addition, CsA enhances keratinocyte survival from removal of extracellular matrix or UVB radiation. At the molecular level, CsA increases AKT activation after serum treatment and UVB irradiation. Furthermore we found that expression of PTEN, the negative regulator of AKT activation, is significantly reduced post-CsA in human HaCaT and A431 cells and in mouse skin in vivo. CsA-induced PTEN down-regulation occurs at the transcription level and is epidermal growth factor receptor-dependent. Such PTEN suppression is required for increased AKT activation. Inhibition of AKT activation abolishes CsA-promoted growth and survival, indicating that AKT hyperactivation is essential for both growth and survival of CsA-treated cells. In addition, mTOR signaling as a known AKT downstream pathway is required for CsA-enhanced growth and survival. Taken together, we have identified the PTEN/AKT pathway as new molecular targets of CsA in epidermal keratinocytes, suggesting a previously unknown mechanism in CsA-enhanced skin carcinogenesis. Our findings challenge assumptions about how CsA-associated tumors arise in skin.


Journal of Investigative Dermatology | 2009

PTEN: New Insights into Its Regulation and Function in Skin Cancer

Mei Ming; Yu-Ying He

Skin cancer is the most common cancer in the United States. UV radiation in sunlight is the major environmental factor causing skin cancer development. PTEN (phosphatase and tensin homolog deleted on chromosome 10), a recently discovered tumor suppressor gene, is frequently mutated, deleted, or epigenetically silenced in various human cancers. PTEN negatively regulates the oncogenic phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. PTEN is clearly a critical tumor suppressor for skin cancer in humans and in mice. This review summarizes the recent progress in the function of PTEN in the development of skin cancer, including basal-cell carcinoma, squamous-cell carcinoma, and melanoma. The regulation of PTEN by UV radiation is also discussed in association with skin carcinogenesis. Understanding the fundamental mechanisms that lead to the reduction of PTEN function in skin carcinogenesis and the essential association with UV radiation opens up new opportunities for molecular chemoprevention and therapy of skin cancer by targeting PTEN pathways.


Cancer Research | 2014

SIRT6 Promotes COX-2 Expression and Acts as an Oncogene in Skin Cancer

Mei Ming; Weinong Han; Baozhong Zhao; Nagalingam R. Sundaresan; Chu-Xia Deng; Mahesh P. Gupta; Yu-Ying He

SIRT6 is a SIR2 family member that regulates multiple molecular pathways involved in metabolism, genomic stability, and aging. It has been proposed previously that SIRT6 is a tumor suppressor in cancer. Here, we challenge this concept by presenting evidence that skin-specific deletion of SIRT6 in the mouse inhibits skin tumorigenesis. SIRT6 promoted expression of COX-2 by repressing AMPK signaling, thereby increasing cell proliferation and survival in the skin epidermis. SIRT6 expression in skin keratinocytes was increased by exposure to UVB light through activation of the AKT pathway. Clinically, we found that SIRT6 was upregulated in human skin squamous cell carcinoma. Taken together, our results provide evidence that SIRT6 functions as an oncogene in the epidermis and suggest greater complexity to its role in epithelial carcinogenesis.


Oncogene | 2013

Role of AMPK in UVB-induced DNA damage repair and growth control

Chunli Wu; Lei Qiang; Weinong Han; Mei Ming; Benoit Viollet; Yu-Ying He

Skin cancer is the most common cancer in the United States, while DNA-damaging ultraviolet B (UVB) radiation from the sun remains the major environmental risk factor. Reducing skin cancer incidence is becoming an urgent issue. The energy-sensing enzyme 5′-AMP-activated protein kinase (AMPK) has a key role in the regulation of cellular lipid and protein metabolism in response to stimuli such as exercise and changes in fuel availability. However, the role of AMPK in the response of skin cells to UVB damage and in skin cancer prevention remains unknown. Here we show that AMPK activation is reduced in human and mouse squamous cell carcinoma as compared with normal skin, and by UVB irradiation, suggesting that AMPK is a tumor suppressor. At the molecular level, AMPK deletion reduced the expression of the DNA repair protein xeroderma pigmentosum C (XPC) and UVB-induced DNA repair. AMPK activation by its activators AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) and metformin (N′,N′-dimethylbiguanide), the most widely used antidiabetic drug, increased the expression of XPC and UVB-induced DNA repair in mouse skin, normal human epidermal keratinocytes, and AMPK wild-type (WT) cells but not in AMPK-deficient cells, indicating an AMPK-dependent mechanism. Topical treatment with AICAR and metformin not only delayed onset of UVB-induced skin tumorigenesis but also reduced tumor multiplicity. Furthermore, AMPK deletion increased extracellular signal-regulated kinase (ERK) activation and cell proliferation, whereas AICAR and metformin inhibited ERK activation and cell proliferation in keratinocytes, mouse skin, AMPK WT and AMPK-deficient cells, suggesting an AMPK-independent mechanism. Finally, in UVB-damaged tumor-bearing mice, both topical and systemic metformin prevented the formation of new tumors and suppressed growth of established tumors. Our findings not only suggest that AMPK is a tumor suppressor in the skin by promoting DNA repair and controlling cell proliferation, but also demonstrate previously unknown mechanisms by which the AMPK activators prevent UVB-induced skin tumorigenesis.

Collaboration


Dive into the Mei Ming's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Qiang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoling Li

Research Triangle Park

View shared research outputs
Researchain Logo
Decentralizing Knowledge