Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weinong Han is active.

Publication


Featured researches published by Weinong Han.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C

Mei Ming; Christopher R. Shea; Xiumei Guo; Xiaoling Li; Keyoumars Soltani; Weinong Han; Yu-Ying He

Disruption of the nucleotide excision repair (NER) pathway by mutations can cause xeroderma pigmentosum, a syndrome predisposing affected individuals to development of skin cancer. The xeroderma pigmentosum C (XPC) protein is essential for initiating global genome NER by recognizing the DNA lesion and recruiting downstream factors. Here we show that inhibition of the deacetylase and longevity factor SIRT1 impairs global genome NER through suppressing the transcription of XPC in a SIRT1 deacetylase-dependent manner. SIRT1 enhances XPC expression by reducing AKT-dependent nuclear localization of the transcription repressor of XPC. Finally, we show that SIRT1 levels are significantly reduced in human skin tumors from Caucasian patients, a population at highest risk. These findings suggest that SIRT1 acts as a tumor suppressor through its role in DNA repair.


Cancer Research | 2011

PTEN Positively Regulates UVB-Induced DNA Damage Repair

Mei Ming; Li Feng; Christopher R. Shea; Keyoumars Soltani; Baozhong Zhao; Weinong Han; Robert C. Smart; Carol S. Trempus; Yu-Ying He

Nonmelanoma skin cancer is the most common cancer in the United States, where DNA-damaging ultraviolet B (UVB) radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papilloma and squamous cell carcinoma (SCC), levels of PTEN were reduced compared with skin lacking these lesions. Likewise, there was a reduction in PTEN levels in human premalignant actinic keratosis and malignant SCCs, supporting a key role for PTEN in human skin cancer formation and progression. PTEN downregulation impaired the capacity of global genomic nucleotide excision repair (GG-NER), a critical mechanism for removing UVB-induced mutagenic DNA lesions. In contrast to the response to ionizing radiation, PTEN downregulation prolonged UVB-induced growth arrest and increased the activation of the Chk1 DNA damage pathway in an AKT-independent manner, likely due to reduced DNA repair. PTEN loss also suppressed expression of the key GG-NER protein xeroderma pigmentosum C (XPC) through the AKT/p38 signaling axis. Reconstitution of XPC levels in PTEN-inhibited cells restored GG-NER capacity. Taken together, our findings define PTEN as an essential genomic gatekeeper in the skin through its ability to positively regulate XPC-dependent GG-NER following DNA damage.


Oncogene | 2010

UVB induced ERK/AKT-dependent PTEN suppression promotes survival of epidermal keratinocytes

Mei Ming; Weinong Han; Jessica Maddox; Keyoumars Soltani; Christopher R. Shea; Diane M. Freeman; Yu-Ying He

Ultraviolet (UV) radiation in sunlight is the major environmental cause of skin cancer. PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a proven critical tumor suppressor. We report here that UVB downregulates PTEN in primary human keratinocytes, human HaCaT keratinocytes and mouse skin. As compared with normal skin, PTEN levels are reduced in human actinic keratosis, a precancerous skin lesion caused by solar UV. PTEN downregulation is mediated by two mechanisms: (1) PTEN is cleaved by active caspase in apoptotic cells in which AKT activation is reduced; and (2) PTEN transcription is suppressed in surviving cells, and this suppression is independent of caspase activation and occurs in parallel with increased ERK and AKT activation. We report here that the combination of ERK and AKT activation is crucial for PTEN suppression in surviving cells following UVB irradiation. AKT activation is higher in UVB-irradiated surviving cells as compared with unirradiated cells. The ERK and AKT pathways are involved in sustaining PTEN suppression in UVB-exposed cells. Increasing PTEN expression enhances apoptosis of keratinocytes in response to UVB irradiation. Our findings indicate that (1) UVB radiation suppresses PTEN expression in keratinocytes; and (2) the ERK/AKT/PTEN axis may form a positive feedback loop following UVB irradiation. Our identification of PTEN as a critical molecular target of UVB provides new insights into the pathogenesis of skin cancer.


Journal of Biological Chemistry | 2010

Immunosuppressive Cyclosporin A Activates AKT in Keratinocytes through PTEN Suppression IMPLICATIONS IN SKIN CARCINOGENESIS

Weinong Han; Mei Ming; Tong-Chuan He; Yu-Ying He

Non-melanoma skin cancer, the most common neoplasia after solid organ transplantation, causes serious morbidity and mortality and is related to sun exposure. Cyclosporin A (CsA) has been used widely to prevent rejection in organ transplantation. The mechanism of CsA action in causing cancer was thought to be well understood via immunosuppression. Here, we show that CsA promotes primary skin tumor growth in immune-deficient mice and keratinocyte growth in vitro. In addition, CsA enhances keratinocyte survival from removal of extracellular matrix or UVB radiation. At the molecular level, CsA increases AKT activation after serum treatment and UVB irradiation. Furthermore we found that expression of PTEN, the negative regulator of AKT activation, is significantly reduced post-CsA in human HaCaT and A431 cells and in mouse skin in vivo. CsA-induced PTEN down-regulation occurs at the transcription level and is epidermal growth factor receptor-dependent. Such PTEN suppression is required for increased AKT activation. Inhibition of AKT activation abolishes CsA-promoted growth and survival, indicating that AKT hyperactivation is essential for both growth and survival of CsA-treated cells. In addition, mTOR signaling as a known AKT downstream pathway is required for CsA-enhanced growth and survival. Taken together, we have identified the PTEN/AKT pathway as new molecular targets of CsA in epidermal keratinocytes, suggesting a previously unknown mechanism in CsA-enhanced skin carcinogenesis. Our findings challenge assumptions about how CsA-associated tumors arise in skin.


Cancer Research | 2014

SIRT6 Promotes COX-2 Expression and Acts as an Oncogene in Skin Cancer

Mei Ming; Weinong Han; Baozhong Zhao; Nagalingam R. Sundaresan; Chu-Xia Deng; Mahesh P. Gupta; Yu-Ying He

SIRT6 is a SIR2 family member that regulates multiple molecular pathways involved in metabolism, genomic stability, and aging. It has been proposed previously that SIRT6 is a tumor suppressor in cancer. Here, we challenge this concept by presenting evidence that skin-specific deletion of SIRT6 in the mouse inhibits skin tumorigenesis. SIRT6 promoted expression of COX-2 by repressing AMPK signaling, thereby increasing cell proliferation and survival in the skin epidermis. SIRT6 expression in skin keratinocytes was increased by exposure to UVB light through activation of the AKT pathway. Clinically, we found that SIRT6 was upregulated in human skin squamous cell carcinoma. Taken together, our results provide evidence that SIRT6 functions as an oncogene in the epidermis and suggest greater complexity to its role in epithelial carcinogenesis.


Oncogene | 2013

Role of AMPK in UVB-induced DNA damage repair and growth control

Chunli Wu; Lei Qiang; Weinong Han; Mei Ming; Benoit Viollet; Yu-Ying He

Skin cancer is the most common cancer in the United States, while DNA-damaging ultraviolet B (UVB) radiation from the sun remains the major environmental risk factor. Reducing skin cancer incidence is becoming an urgent issue. The energy-sensing enzyme 5′-AMP-activated protein kinase (AMPK) has a key role in the regulation of cellular lipid and protein metabolism in response to stimuli such as exercise and changes in fuel availability. However, the role of AMPK in the response of skin cells to UVB damage and in skin cancer prevention remains unknown. Here we show that AMPK activation is reduced in human and mouse squamous cell carcinoma as compared with normal skin, and by UVB irradiation, suggesting that AMPK is a tumor suppressor. At the molecular level, AMPK deletion reduced the expression of the DNA repair protein xeroderma pigmentosum C (XPC) and UVB-induced DNA repair. AMPK activation by its activators AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) and metformin (N′,N′-dimethylbiguanide), the most widely used antidiabetic drug, increased the expression of XPC and UVB-induced DNA repair in mouse skin, normal human epidermal keratinocytes, and AMPK wild-type (WT) cells but not in AMPK-deficient cells, indicating an AMPK-dependent mechanism. Topical treatment with AICAR and metformin not only delayed onset of UVB-induced skin tumorigenesis but also reduced tumor multiplicity. Furthermore, AMPK deletion increased extracellular signal-regulated kinase (ERK) activation and cell proliferation, whereas AICAR and metformin inhibited ERK activation and cell proliferation in keratinocytes, mouse skin, AMPK WT and AMPK-deficient cells, suggesting an AMPK-independent mechanism. Finally, in UVB-damaged tumor-bearing mice, both topical and systemic metformin prevented the formation of new tumors and suppressed growth of established tumors. Our findings not only suggest that AMPK is a tumor suppressor in the skin by promoting DNA repair and controlling cell proliferation, but also demonstrate previously unknown mechanisms by which the AMPK activators prevent UVB-induced skin tumorigenesis.


Journal of Biological Chemistry | 2011

Caffeine Promotes Ultraviolet B-induced Apoptosis in Human Keratinocytes without Complete DNA Repair

Weinong Han; Mei Ming; Yu-Ying He

In response to ultraviolet B damage, keratinocytes undergo apoptosis to eliminate damaged cells, thereby preventing tumorigenic transformation. Caffeine, the most widely consumed psychoactive substance, produces complex pharmacological actions; it has been shown to be chemopreventive in non-melamona skin cancer in mice through increasing apoptosis. Here we have investigated the molecular and cellular mechanisms in the pro-apoptotic effect of caffeine on UVB-irradiated human HaCaT keratinocytes. Pretreatment with caffeine increased UVB-induced apoptosis in HaCaT cells. Caffeine blocked UVB-induced Chk1 phosphorylation. In addition, similar to the effect of the PI3K inhibitor LY294002, caffeine also inhibited phosphorylation of AKT and up-regulation of COX-2, two critical oncogenic pathways in skin tumorigenesis. However, phosphorylation of EGFR or ERK was unaffected. Inhibiting ATR pathways by siRNA targeting ATR had little effect on UVB-induced apoptosis or AKT activation, indicating that the inhibitory effect of caffeine on apoptosis and the AKT pathway does not require the ATR pathway. Inhibiting AKT by caffeine blocked UVB-induced COX-2 up-regulation. Expression of constitutively active AKT that was not inhibited by caffeine was found to protect cells from caffeine-promoted apoptosis post-UVB irradiation, indicating that AKT is an essential inhibitory target for caffeine to promote apoptosis. Caffeine specifically sensitized cells with unrepaired DNA damage to UVB-induced apoptosis. These findings indicate that in HaCaT keratinocytes, inhibiting the AKT/COX-2 pathways through an ATR-independent pathway is a critical molecular mechanism by which caffeine promotes UVB-induced apoptosis of unrepaired keratinocytes for elimination.


Journal of Biological Chemistry | 2012

Nrf1 CNC-bZIP Protein Promotes Cell Survival and Nucleotide Excision Repair through Maintaining Glutathione Homeostasis

Weinong Han; Mei Ming; Rui Zhao; Jingbo Pi; Chunli Wu; Yu-Ying He

Background: The regulation of UVB response is not fully understood. Results: Nrf1 loss increases UVB-induced apoptosis and inhibits nucleotide excision repair in surviving cells by decreasing glutathione levels. Conclusion: Nrf1 promotes cell survival and DNA repair following UVB irradiation by maintaining glutathione availability. Significance: These findings identify a new functional role of Nrf1 in the response of keratinocytes to UVB. Skin cancer is the most common cancer in the United States. Its major environmental risk factor is UVB radiation in sunlight. In response to UVB damage, epidermal keratinocytes activate a specific repair pathway, i.e. nucleotide excision repair, to remove UVB-induced DNA lesions. However, the regulation of UVB response is not fully understood. Here we show that the long isoform of the nuclear factor erythroid 2-related factor 1 (Nrf1, also called NFE2L1), a cytoprotective transcription factor critical for the expression of multiple antioxidant response element-dependent genes, plays an important role in the response of keratinocytes to UVB. Nrf1 loss sensitized keratinocytes to UVB-induced apoptosis by up-regulating the expression of the proapoptotic Bcl-2 family member Bik through reducing glutathione levels. Knocking down Bik reduced UVB-induced apoptosis in Nrf1-inhibited cells. In UVB-irradiated surviving cells, however, disruption of Nrf1 impaired nucleotide excision repair through suppressing the transcription of xeroderma pigmentosum C (XPC), a factor essential for initiating the global genome nucleotide excision repair by recognizing the DNA lesion and recruiting downstream factors. Nrf1 enhanced XPC expression by increasing glutathione availability but was independent of the transcription repressor of XPC. Adding XPC or glutathione restored the DNA repair capacity in Nrf1-inhibited cells. Finally, we demonstrate that Nrf1 levels are significantly reduced by UVB radiation in mouse skin and are lower in human skin tumors than in normal skin. These results indicate a novel role of Nrf1 in UVB-induced DNA damage repair and suggest Nrf1 as a tumor suppressor in the skin.


Cancer Prevention Research | 2012

Deregulation of XPC and CypA by Cyclosporin A: An Immunosuppression-Independent Mechanism of Skin Carcinogenesis

Weinong Han; Keyoumars Soltani; Mei Ming; Yu-Ying He

Skin cancer is the most common malignancy in organ transplant recipients, causing serious morbidity and mortality. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, cyclosporin A (CsA) has been used as an effective immunosuppressive to prevent rejection. Therefore immunosuppression has been widely assumed to be the major cause for increased skin carcinogenesis. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression dependent or independent. Here, using both immunocompromised nude mice which are defective in mature T lymphocytes as an in vivo model and human keratinocytes as an in vitro model, we showed that CsA impairs genomic integrity in the response of keratinocytes to ultra violet B (UVB). Following UVB radiation, CsA inhibited UVB-induced DNA damage repair by suppressing the transcription of the DNA repair factor xeroderma pigmentosum C (XPC). In addition, CsA compromised the UVB-induced checkpoint function by upregulating the molecular chaperone protein cyclophilin A (CypA). XPC mRNA levels were lower, whereas CypA mRNA and protein levels were higher in human skin cancers than in normal skin. CsA-induced phosphoinositide 3-kinase(PI3K)/AKT activation was required for both XPC suppression and CypA upregulation. Blocking UVB damage or inhibiting the PI3K/AKT pathway prevented CsA-sensitized skin tumorigenesis. Our findings identified deregulation of XPC and CypA as key targets of CsA, and UVB damage and PI3K/AKT activation as two principal drivers for CsA-sensitized skin tumorigenesis, further supporting an immunosuppression-independent mechanism of CsA action on skin tumorigenesis. Cancer Prev Res; 5(9); 1155–62. ©2012 AACR.


Photochemistry and Photobiology | 2009

Requirement for Metalloproteinase-dependent ERK and AKT Activation in UVB-induced G1-S Cell Cycle Progression of Human Keratinocytes

Weinong Han; Yu-Ying He

UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.

Collaboration


Dive into the Weinong Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Ming

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Lei

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Bo Liu

University of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge