Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mei-Ru Chen is active.

Publication


Featured researches published by Mei-Ru Chen.


Cell Host & Microbe | 2011

Conserved Herpesvirus Kinases Target the DNA Damage Response Pathway and TIP60 Histone Acetyltransferase to Promote Virus Replication

Renfeng Li; Jian Zhu; Zhi Xie; Gangling Liao; Jianyong Liu; Mei-Ru Chen; Shaohui Hu; Crystal Woodard; Jimmy Lin; Sean D. Taverna; Prashant Desai; Richard F. Ambinder; Gary S. Hayward; Jiang Qian; Heng Zhu; S. Diane Hayward

Herpesviruses, which are major human pathogens, establish life-long persistent infections. Although the α, β, and γ herpesviruses infect different tissues and cause distinct diseases, they each encode a conserved serine/threonine kinase that is critical for virus replication and spread. The extent of substrate conservation and the key common cell-signaling pathways targeted by these kinases are unknown. Using a human protein microarray high-throughput approach, we identify shared substrates of the conserved kinases from herpes simplex virus, human cytomegalovirus, Epstein-Barr virus (EBV), and Kaposis sarcoma-associated herpesvirus. DNA damage response (DDR) proteins were statistically enriched, and the histone acetyltransferase TIP60, an upstream regulator of the DDR pathway, was required for efficient herpesvirus replication. During EBV replication, TIP60 activation by the BGLF4 kinase triggers EBV-induced DDR and also mediates induction of viral lytic gene expression. Identification of key cellular targets of the conserved herpesvirus kinases will facilitate the development of broadly effective antiviral strategies.


Journal of Virology | 2000

A Protein Kinase Activity Associated with Epstein-Barr Virus BGLF4 Phosphorylates the Viral Early Antigen EA-D In Vitro

Mei-Ru Chen; Shin-Jye Chang; Hsiaowen Huang; Jen-Yang Chen

ABSTRACT The Epstein-Barr virus (EBV) open reading frame BGLF4 was identified as a potential Ser/Thr protein kinase gene through the recognition of amino acid sequence motifs characteristic of conserved regions within the catalytic domains of protein kinases. In order to investigate this potential kinase activity, BGLF4 was expressed inEscherichia coli and the purified protein was used to generate a specific antiserum. Recombinant vaccinia virus vTF7-3, which expresses the T7 RNA polymerase, was used to infect 293 and 293T cells after transient transfection with a plasmid containing BGLF4 under the control of the T7 promoter. Autophosphorylation of the BGLF4 protein was demonstrated using the specific antiserum in an immune complex kinase assay. In addition, EBNA-1-tagged BGLF4 and EBNA-1 monoclonal antibody 5C11 were used to demonstrate the specificity of the kinase activity and to locate BGLF4 in the cytoplasm of transfected cells. Manganese ions were found to be essential for autophosphorylation of BGLF4, and magnesium can stimulate the activity. BGLF4 can utilize GTP, in addition to ATP, as a phosphate donor in this assay. BGLF4 can phosphorylate histone and casein in vitro. Among the potential viral protein substrates we examined, the EBV early antigen (EA-D, BMRF1), a DNA polymerase accessory factor and an important transactivator during lytic infection, was found to be phosphorylated by BGLF4 in vitro. Amino acids 1 to 26 of BGLF4, but not the predicted conserved catalytic domain, were found to be essential for autophosphorylation of BGLF4.


Journal of Virology | 2008

Epstein-Barr Virus BGLF4 Kinase Induces Disassembly of the Nuclear Lamina To Facilitate Virion Production

Chung-Pei Lee; Yu-Hao Huang; Su-Fang Lin; Yao Chang; Yu-Hsin Chang; Kenzo Takada; Mei-Ru Chen

ABSTRACT DNA viruses adopt various strategies to modulate the cellular environment for efficient genome replication and virion production. Previously, we demonstrated that the BGLF4 kinase of Epstein-Barr virus (EBV) induces premature chromosome condensation through the activation of condensin and topoisomerase IIα (C. P. Lee, J. Y. Chen, J. T. Wang, K. Kimura, A. Takemoto, C. C. Lu, and M. R. Chen, J. Virol. 81:5166-5180, 2007). In this study, we show that BGLF4 interacts with lamin A/C and phosphorylates lamin A protein in vitro. Using a green fluorescent protein (GFP)-lamin A system, we found that Ser-22, Ser-390, and Ser-392 of lamin A are important for the BGLF4-induced disassembly of the nuclear lamina and the EBV reactivation-mediated redistribution of nuclear lamin. Virion production and protein levels of two EBV primary envelope proteins, BFRF1 and BFLF2, were reduced significantly by the expression of GFP-lamin A(5A), which has five Ser residues replaced by Ala at amino acids 22, 390, 392, 652, and 657 of lamin A. Our data indicate that BGLF4 kinase phosphorylates lamin A/C to promote the reorganization of the nuclear lamina, which then may facilitate the interaction of BFRF1 and BFLF2s and subsequent virion maturation. UL kinases of alpha- and betaherpesviruses also induce the disassembly of the nuclear lamina through similar sites on lamin A/C, suggesting a conserved mechanism for the nuclear egress of herpesviruses.


Journal of Virology | 2009

Epstein-Barr Virus BGLF4 Kinase Suppresses the Interferon Regulatory Factor 3 Signaling Pathway

Jiin-Tarng Wang; Shin-Lian Doong; Shu-Chun Teng; Chung-Pei Lee; Ching-Hwa Tsai; Mei-Ru Chen

ABSTRACT The BGLF4 protein kinase of Epstein-Barr virus (EBV) is a member of the conserved family of herpesvirus protein kinases which, to some extent, have a function similar to that of the cellular cyclin-dependent kinase in regulating multiple cellular and viral substrates. In a yeast two-hybrid screening assay, a splicing variant of interferon (IFN) regulatory factor 3 (IRF3) was found to interact with the BGLF4 protein. This interaction was defined further by coimmunoprecipitation in transfected cells and glutathione S-transferase (GST) pull-down in vitro. Using reporter assays, we show that BGLF4 effectively suppresses the activities of the poly(I:C)-stimulated IFN-β promoter and IRF3-responsive element. Moreover, BGLF4 represses the poly(I:C)-stimulated expression of endogenous IFN-β mRNA and the phosphorylation of STAT1 at Tyr701. In searching for a possible mechanism, BGLF4 was shown not to affect the dimerization, nuclear translocation, or CBP recruitment of IRF3 upon poly(I:C) treatment. Notably, BGLF4 reduces the amount of active IRF3 recruited to the IRF3-responsive element containing the IFN-β promoter region in a chromatin immunoprecipitation assay. BGLF4 phosphorylates GST-IRF3 in vitro, but Ser339-Pro340 phosphorylation-dependent, Pin1-mediated downregulation is not responsible for the repression. Most importantly, we found that three proline-dependent phosphorylation sites at Ser123, Ser173, and Thr180, which cluster in a region between the DNA binding and IRF association domains of IRF3, contribute additively to the BGLF4-mediated repression of IRF3(5D) transactivation activity. IRF3 signaling is activated in reactivated EBV-positive NA cells, and the knockdown of BGLF4 further stimulates IRF3-responsive reporter activity. The data presented here thus suggest a novel mechanism by which herpesviral protein kinases suppress host innate immune responses and facilitate virus replication.


PLOS Pathogens | 2012

The ESCRT Machinery Is Recruited by the Viral BFRF1 Protein to the Nucleus-Associated Membrane for the Maturation of Epstein-Barr Virus

Chung Pei Lee; Po Ting Liu; Hsiu-Ni Kung; Mei Tzu Su; Huey Huey Chua; Yu-Hsin Chang; Chou Wei Chang; Ching-Hwa Tsai; Fu Tong Liu; Mei-Ru Chen

The cellular endosomal sorting complex required for transport (ESCRT) machinery participates in membrane scission and cytoplasmic budding of many RNA viruses. Here, we found that expression of dominant negative ESCRT proteins caused a blockade of Epstein-Barr virus (EBV) release and retention of viral BFRF1 at the nuclear envelope. The ESCRT adaptor protein Alix was redistributed and partially colocalized with BFRF1 at the nuclear rim of virus replicating cells. Following transient transfection, BFRF1 associated with ESCRT proteins, reorganized the nuclear membrane and induced perinuclear vesicle formation. Multiple domains within BFRF1 mediated vesicle formation and Alix recruitment, whereas both Bro and PRR domains of Alix interacted with BFRF1. Inhibition of ESCRT machinery abolished BFRF1-induced vesicle formation, leading to the accumulation of viral DNA and capsid proteins in the nucleus of EBV-replicating cells. Overall, data here suggest that BFRF1 recruits the ESCRT components to modulate nuclear envelope for the nuclear egress of EBV.


Reviews in Medical Virology | 2010

Escape of herpesviruses from the nucleus.

Chung-Pei Lee; Mei-Ru Chen

The nuclear envelope of eukaryotic cells is composed of double lipid‐bilayer membranes, the membrane‐connected nuclear pore complexes and an underlying nuclear lamina network. The nuclear pore complexes serve as gates for regulating the transport of macromolecules between cytoplasm and nucleus. The nuclear lamina not only provides an intact meshwork for maintaining the nuclear stiffness but also presents a natural barrier against most DNA viruses. Herpesviruses are large DNA viruses associated with multiple human and animal diseases. The complex herpesviral virion contains more than 30 viral proteins. After viral DNA replication, the newly synthesised genome is packaged into the pre‐assembled intranuclear capsid. The nucleocapsid must then transverse through the nuclear envelope to the cytoplasm for the subsequent maturation process. Information regarding how nucleocapsid breaches the rigid nuclear lamina barrier and accesses the inner nuclear membrane for primary envelopment has emerged recently. From the point of view of both viral components and nuclear structure, this review summarises recent advances in the complicated protein–protein interactions and the phosphorylation regulations involved in the nuclear egress of herpesviral nucleocapsids. Copyright


Journal of Virology | 2009

Protein array identification of substrates of the Epstein-Barr virus protein kinase BGLF4.

Jian Zhu; Gangling Liao; Liang Shan; Jun Zhang; Mei-Ru Chen; Gary S. Hayward; S. Diane Hayward; Prashant Desai; Heng Zhu

ABSTRACT A conserved family of herpesvirus protein kinases plays a crucial role in herpesvirus DNA replication and virion production. However, despite the fact that these kinases are potential therapeutic targets, no systematic studies have been performed to identify their substrates. We generated an Epstein-Barr virus (EBV) protein array to evaluate the targets of the EBV protein kinase BGLF4. Multiple proteins involved in EBV lytic DNA replication and virion assembly were identified as previously unrecognized substrates for BGLF4, illustrating the broad role played by this protein kinase. Approximately half of the BGLF4 targets were also in vitro substrates for the cellular kinase CDK1/cyclin B. Unexpectedly, EBNA1 was identified as a substrate and binding partner of BGLF4. EBNA1 is essential for replication and maintenance of the episomal EBV genome during latency. BGLF4 did not prevent EBNA1 binding to sites in the EBV latency origin of replication, oriP. Rather, we found that BGLF4 was recruited by EBNA1 to oriP in cells transfected with an oriP vector and BGLF4 and in lytically induced EBV-positive Akata cells. In cells transfected with an oriP vector, the presence of BGLF4 led to more rapid loss of the episomal DNA, and this was dependent on BGLF4 kinase activity. Similarly, expression of doxycycline-inducible BGLF4 in Akata cells led to a reduction in episomal EBV genomes. We propose that BGLF4 contributes to effective EBV lytic cycle progression, not only through phosphorylation of EBV lytic DNA replication and virion proteins, but also by interfering with the EBNA1 replication function.


Journal of Virology | 2007

Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II.

Chung-Pei Lee; Jen-Yang Chen; Jiin-Tarng Wang; Keiji Kimura; Ai Takemoto; Chih-Chung Lu; Mei-Ru Chen

ABSTRACT Previous studies of Epstein-Barr virus (EBV) replication focused mainly on the viral and cellular factors involved in replication compartment assembly and controlling the cell cycle. However, little is known about how EBV reorganizes nuclear architecture and the chromatin territories. In EBV-positive nasopharyngeal carcinoma NA cells or Akata cells, we noticed that cellular chromatin becomes highly condensed upon EBV reactivation. In searching for the possible mechanisms involved, we found that transient expression of EBV BGLF4 kinase induces unscheduled chromosome condensation, nuclear lamina disassembly, and stress fiber rearrangements, independently of cellular DNA replication and Cdc2 activity. BGLF4 interacts with condensin complexes, the major components in mitotic chromosome assembly, and induces condensin phosphorylation at Cdc2 consensus motifs. BGLF4 also stimulates the decatenation activity of topoisomerase II, suggesting that it may induce chromosome condensation through condensin and topoisomerase II activation. The ability to induce chromosome condensation is conserved in another gammaherpesvirus kinase, murine herpesvirus 68 ORF36. Together, these findings suggest a novel mechanism by which gammaherpesvirus kinases may induce multiple premature mitotic events to provide more extrachromosomal space for viral DNA replication and successful egress of nucleocapsid from the nucleus.


Journal of Biomedical Science | 1997

Characterization of Monoclonal Antibodies to the Zta and DNase Proteins of Epstein-Barr Virus.

Ching-Hwa Tsai; Liu My; Mei-Ru Chen; Jean Lu; Huey-Lang Yang; Jen-Yang Chen; Czau-Siung Yang

Two monoclonal antibodies (mAb) were derived and designated 4F10 and 311H. 4F10 was against the Epstein-Barr virus (EBV) Zta protein and 311H specifically recognized EBV DNase enzyme. Using mAb 4F10 as a probe, the Zta protein could be detected as a 36-kD molecule in L5 cells and as a 38-kD molecule in B95-8 cells, reflecting the fact reported by other laboratories, using rabbit polyclonal antisera, that the Zta protein was variously modified in different host cells. 311H mAb was generated using antigens purified from one-step His-Bind column chromatography. The antigenic epitope recognized by this mAb was mapped within the residues 1-152 of EBV DNase by reacting the mAb with three distinct truncated mutants. Also, using 311H as a reagent to trace the kinetic expression of EBV DNase proteins in EBV-infected Akata cells, the Western blotting results indicated that DNase antigen could be detected at 12 h postactivation. The feasibility of applying these two mAb in the investigation of EBV biology is discussed. Copyright 1997 S. Karger AG, Basel


Frontiers in Microbiology | 2011

Epstein–Barr Virus, the Immune System, and Associated Diseases

Mei-Ru Chen

Host immune system is designed (or evolved) to fight against different pathogens. Many viruses infect the immune cells for the propagation of new progenies, thus the infection may modulate the host immune homeostasis. It has been more than 45 years since the discovery of Epstein–Barr virus (EBV) from a Burkitts lymphoma derived cell line. The ability of EBV to transform primary B cells in vitro leads to the suggestion for its oncogenic potential. However, except the clear understanding of the role of EBV in post-transplantation lymphoproliferative disease, it remains ambiguous why such a ubiquitous virus causes malignant diseases only in a very small subset of individuals. Possible explanation is that EBV may cooperate with other environmental and host genetic factors and lead to the development of EBV associated neoplastic diseases. In addition to infecting B cells, recent studies revealed that EBV may impact host immune system more broadly than previously thought, for example the development of regulatory NKT subsets. Instead of an intensive review, this article aims to provide a linkage to recent advances on the interplay between EBV and host immune system and to inspire further studies on EBV related diseases, especially autoimmune diseases.

Collaboration


Dive into the Mei-Ru Chen's collaboration.

Top Co-Authors

Avatar

Ching-Hwa Tsai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jen-Yang Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Jiin-Tarng Wang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shin-Lian Doong

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Czau-Siung Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Chung Lu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Kurt M. Lin

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Pei-Wen Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shan-Wen Liu

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge