Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mei Shen is active.

Publication


Featured researches published by Mei Shen.


Journal of the American Chemical Society | 2014

Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents

Gavvalapalli Nagarjuna; Jingshu Hui; Kevin J. Cheng; Timothy Lichtenstein; Mei Shen; Jeffrey S. Moore; Joaquín Rodríguez-López

Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E1/2 ∼ -0.7 V vs Ag/Ag(+)(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes-Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li(+)BF4(-)) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for rpoly/rpore (polymer solvodynamic size relative to pore size) values as low as 0.3. The high concentration attainable (>2.0 M) for RAPs in common nonaqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for nonaqueous redox flow batteries based on the enabling concept of size-selectivity.


Analytical Chemistry | 2012

Stabilizing nanometer scale tip-to-substrate gaps in scanning electrochemical microscopy using an isothermal chamber for thermal drift suppression.

Jiyeon Kim; Mei Shen; Nikoloz Nioradze; Shigeru Amemiya

The control of a nanometer-wide gap between tip and substrate is critical for nanoscale applications of scanning electrochemical microscopy (SECM). Here, we demonstrate that the stability of the nanogap in ambient conditions is significantly compromised by the thermal expansion and contraction of components of an SECM stage upon a temperature change and can be dramatically improved by suppressing the thermal drift in a newly developed isothermal chamber. Air temperature in the chamber changes only at ~.2 mK/min to remarkably and reproducibly slow down the drift of tip-substrate distance to ~0.4 nm/min in contrast to 5-150 nm/min without the chamber. Eventually, the stability of the nanogap in the chamber is limited by its fluctuation with a standard deviation of ±0.9 nm, which is mainly ascribed to the instability of a piezoelectric positioner. The subnanometer scale drift and fluctuation are measured by forming a ~20 nm-wide gap under the 12 nm-radius nanopipet tip based on ion transfer at the liquid/liquid interface. The isothermal chamber is useful for SECM and, potentially, for other scanning probe microscopes, where thermal-drift errors in vertical and lateral probe positioning are unavoidable by the feedback-control of the probe-substrate distance.


Analytical Chemistry | 2013

Origins of Nanoscale Damage to Glass-Sealed Platinum Electrodes with Submicrometer and Nanometer Size

Nikoloz Nioradze; Ran Chen; Jiyeon Kim; Mei Shen; Padmanabhan Santhosh; Shigeru Amemiya

Glass-sealed Pt electrodes with submicrometer and nanometer size have been successfully developed and applied for nanoscale electrochemical measurements such as scanning electrochemical microscopy (SECM). These small electrodes, however, are difficult to work with because they often lose a current response or give a low SECM feedback in current-distance curves. Here we report that these problems can be due to the nanometer-scale damage that is readily and unknowingly made to the small tips in air by electrostatic discharge or in electrolyte solution by electrochemical etching. The damaged Pt electrodes are recessed and contaminated with removed electrode materials to lower their current responses. The recession and contamination of damaged Pt electrodes are demonstrated by scanning electron microscopy and X-ray energy dispersive spectroscopy. The recessed geometry is noticeable also by SECM but is not obvious from a cyclic voltammogram. Characterization of a damaged Pt electrode with recessed geometry only by cyclic voltammetry may underestimate electrode size from a lower limiting current owing to an invalid assumption of inlaid disk geometry. Significantly, electrostatic damage can be avoided by grounding a Pt electrode and nearby objects, most importantly, an operator as a source of electrostatic charge. Electrochemical damage can be avoided by maintaining potentiostatic control of a Pt electrode without internally disconnecting the electrode from a potentiostat between voltammetric measurements. Damage-free Pt electrodes with submicrometer and nanometer sizes are pivotal for reliable and quantitative nanoelectrochemical measurements.


Journal of the American Chemical Society | 2012

Quantitative Imaging of Ion Transport through Single Nanopores by High-Resolution Scanning Electrochemical Microscopy

Mei Shen; Ryoichi Ishimatsu; Jiyeon Kim; Shigeru Amemiya

Here we report on the unprecedentedly high resolution imaging of ion transport through single nanopores by scanning electrochemical microscopy (SECM). The quantitative SECM image of single nanopores allows for the determination of their structural properties, including their density, shape, and size, which are essential for understanding the permeability of the entire nanoporous membrane. Nanoscale spatial resolution was achieved by scanning a 17 nm radius pipet tip at a distance as low as 1.3 nm from a highly porous nanocrystalline silicon membrane in order to obtain the peak current response controlled by the nanopore-mediated diffusional transport of tetrabutylammonium ions to the nanopipet-supported liquid-liquid interface. A 280 nm × 500 nm image resolved 13 nanopores, which corresponds to a high density of 93 nanopores/μm(2). A finite element simulation of the SECM image was performed to assess quantitatively the spatial resolution limited by the tip diameter in resolving two adjacent pores and to determine the actual size of a nanopore, which was approximated as an elliptical cylinder with a depth of 30 nm and major and minor axes of 53 and 41 nm, respectively. These structural parameters were consistent with those determined by transmission electron microscopy, thereby confirming the reliability of quantitative SECM imaging at the nanoscale level.


Journal of the American Chemical Society | 2010

Electrochemistry and Electrogenerated Chemiluminescence of Dithienylbenzothiadiazole Derivative. Differential Reactivity of Donor and Acceptor Groups and Simulations of Radical Cation-Anion and Dication-Radical Anion Annihilations

Mei Shen; Joaquín Rodríguez-López; Ju Huang; Quan Liu; Xu Hui Zhu; Allen J. Bard

We report here the electrochemistry and electrogenerated chemiluminescence (ECL) of a red-emitting dithienylbenzothiadiazole-based molecular fluorophore (4,7-bis(4-(4-sec-butoxyphenyl)-5-(3,5-di(1-naphthyl)phenyl)thiophen-2-yl)-2,1,3-benzothiadiazole, 1b). 1b contains two substituted thiophene groups as strong electron donors at the ends connected directly to a strong electron acceptor, 2,1,3-benzothiadiazole, in the center. Each thiophene moiety is substituted in position 2 by 3,5-di(1-naphthyl)phenyl and in position 3 by 4-sec-butoxyphenyl. Cyclic voltammetry of 1b, with scan rate ranging from 0.05 to 0.75 V/s, shows a single one-electron reduction wave (E°(red) = -1.18 V vs SCE) and two nernstian one-electron oxidation waves (E°(1,ox) = 1.01 V, E°(2,ox) = 1.24 V vs SCE). Reduction of the unsubstituted 2,1,3-benzothiadiazole center shows nernstian behavior with E°(red) = -1.56 V vs SCE. By comparison to a digital simulation, the heterogeneous electron-transfer rate constant for reduction, k(r)° = 1.5 × 10(-3) cm/s, is significantly smaller than those for the oxidations, k(o)° > 0.1 cm/s, possibly indicating that the two substituted end groups have a blocking effect on the reduction of the benzothiadiazole center. The ECL spectrum, produced by electron-transfer annihilation of the reduced and oxidized forms, consists of a single peak with maximum emission at about 635 nm, consistent with the fluorescence of the parent molecule. Relative ECL intensities with respect to 9,10-diphenylanthracene are 330% and 470% for the radical anion-cation and radical anion-dication annihilation, respectively. Radical anion (A(-•))-cation (A(+•)) annihilation produced by potential steps shows symmetric ECL transients during anodic and cathodic pulses, while for anion (A(-•))-dication (A(2+•)) annihilation, transient ECL shows asymmetry in which the anodic pulse is narrower than the cathodic pulse. Digital simulation of the transient ECL experiments showed that the origin of the observed asymmetry is asymmetry in the amount of generated charges rather than instability of the electrogenerated species.


Electrochimica Acta | 2013

Electrochemical sensing and imaging based on ion transfer at liquid/liquid interfaces

Shigeru Amemiya; Jiyeon Kim; Anahita Izadyar; Benjamin Kabagambe; Mei Shen; Ryoichi Ishimatsu

Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed.


Analytical Chemistry | 2015

Nanopipet-Based Liquid−Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer

Michelle L. Colombo; Jonathan V. Sweedler; Mei Shen

A nanoscale interface between two immiscible electrolyte solutions (ITIES) provides a unique analytical platform for the detection of ionic species of biological interest such as neurotransmitters and neuromodulators, especially those that are otherwise difficult to detect directly on a carbon electrode without electrode modification. We report the detection of acetylcholine, serotonin, and tryptamine on nanopipet electrode probes with sizes ranging from a radius of ≈7 to 35 nm. The transfer of these analytes across a 1,2-dichloroethane/water interface was studied by cyclic voltammetry and amperometry. Well-defined sigmoidal voltammograms were observed on the nanopipet electrodes within the potential window of artificial seawater for acetylcholine and tryptamine. The half wave transfer potential, E1/2, of acetylcholine, tryptamine, and serotonin were found to be -0.11, -0.25, and -0.47 V vs E(1/2,TEA) (term is defined later in experimental), respectively. The detection was linear in the range of 0.25-6 mM for acetylcholine and of 0.5-10 mM for tryptamine in artificial seawater. Transfer of serotonin was linear in the range of 0.15-8 mM in LiCl solution. The limit of detection for serotonin in LiCl on a radius ≈21 nm nanopipet electrode was 77 μM, for acetylcholine on a radius ≈7 nm nanopipet electrode was 205 μM, and for tryptamine on a radius ≈19 nm nanopipet electrode was 86 μM. Nanopipet-supported ITIES probes have great potential to be used in nanometer spatial resolution measurements for the detection of neurotransmitters.


Journal of the American Chemical Society | 2013

Electrogenerated Chemiluminescence of Solutions, Films, and Nanoparticles of Dithienylbenzothiadiazole-Based Donor− Acceptor−Donor Red Fluorophore. Fluorescence Quenching Study of Organic Nanoparticles

Mei Shen; Xu Hui Zhu; Allen J. Bard

We report here the electrochemistry, spectroscopy, and electrogenerated chemiluminescence (ECL) from a solution, film, and nanoparticles (NPs) of a red-emitting dithienylbenzothiadiazole molecular fluorophore [4,7-bis(4-(n-hexyl)-5-(3,5-di(1-naphthyl)phenyl)thiophen-2-yl)-2,1,3-benzothiadiazole, 1a], which has a donor-acceptor-donor configuration. In addition, the quenching of the fluorescence of the organic NPs by KI was investigated. The 1a film and NPs exhibit two absorbance peaks at 350 and ~504 nm that are red-shifted compared to those of 1a dissolved in solution (340 and 486 nm). Fluorescence quenching of 1a NPs does not follow a linear Stern-Volmer relationship; i.e., the fluorescence emission with excitation wavelength at either 350 or 504 nm decreased with increasing concentration of KI. Static quenching and heterogeneity related to the size distribution of the 1a NPs are proposed to explain the nonlinearity. A lifetime of 4.49 ± 0.04 ns was found for 1a organic NPs in water saturated with N2. After addition of KI, the fluorescence lifetime decreased to 3.1 ns. The fluorescence emission of 1a film/NPs is red-shifted (~17 nm) compared with that of 1a solution in dichloromethane (DCM). Solution ECL was generated in DCM through an annihilation reaction, while film and NP ECL could be generated in water through oxidation with a coreactant, tri-n-propylamine (TPrA). A film of 1a with thickness of 100-900 nm was prepared by drop-casting 1a in DCM on fluorine-doped tin oxide, and the ECL of the 1a film was found in phosphate-buffered saline solution with TPrA. Both 1a in solution and the 1a film produce strong ECL (I(film) = 0.14I(solution)). The ECL spectrum of 1a in solution, produced by electron-transfer annihilation of the reduced and oxidized forms, consists of a single peak with maximum emission at about 637 ± 4 nm, ~20 nm red-shifted from its fluorescence, while the ECL spectrum of 1a film produced by reaction with TPrA consists of a single peak with maximum emission at 642 ± 3 nm, a 10 nm red shift compared with the fluorescence of 1a film. Organic fluorescent 1a NPs were prepared by a reprecipitation method in water saturated with N2, and they were characterized by transmission electron microscopy, absorbance, fluorescence, and ECL. Strong ECL was also generated from the organic NPs in water by reduction with K2S2O8 coreactant.


Analytical Chemistry | 2014

Ion permeability of the nuclear pore complex and ion-induced macromolecular permeation as studied by scanning electrochemical and fluorescence microscopy

Jiyeon Kim; Anahita Izadyar; Mei Shen; Ryoichi Ishimatsu; Shigeru Amemiya

Efficient delivery of therapeutic macromolecules and nanomaterials into the nucleus is imperative for gene therapy and nanomedicine. Nucleocytoplasmic molecular transport, however, is tightly regulated by the nuclear pore complex (NPC) with the hydrophobic transport barriers based on phenylalanine and glycine repeats. Herein, we apply scanning electrochemical microscopy (SECM) to quantitatively study the permeability of the NPCs to small probe ions with a wide range of hydrophobicity as a measure of their hydrophobic interactions with the transport barriers. Amperometric detection of the redox-inactive probe ions is enabled by using the ion-selective SECM tips based on the micropipet- or nanopipet-supported interfaces between two immiscible electrolyte solutions. The remarkably high ion permeability of the NPCs is successfully measured by SECM and theoretically analyzed. This analysis demonstrates that the ion permeability of the NPCs is determined by the dimensions and density of the nanopores without a significant effect of the transport barriers on the transported ions. Importantly, the weak ion–barrier interactions become significant at sufficiently high concentrations of extremely hydrophobic ions, i.e., tetraphenylarsonium and perfluorobutylsulfonate, to permeabilize the NPCs to naturally impermeable macromolecules. Dependence of ion-induced permeabilization of the NPC on the pathway and mode of macromolecular transport is studied by using fluorescence microscopy to obtain deeper insights into the gating mechanism of the NPC as the basis of a new transport model.


Journal of the American Chemical Society | 2012

Scanning Electrochemical Microscopy Study of Ion Annihilation Electrogenerated Chemiluminescence of Rubrene and (Ru(bpy) 3 ) 2

Joaquín Rodríguez-López; Mei Shen; Alexander B. Nepomnyashchii; Allen J. Bard

Scanning electrochemical microscopy (SECM) was used for the study of electrogenerated chemiluminescence (ECL) in the radical annihilation mode. The concurrent steady-state generation of radical ions in the microgap formed between a SECM probe and a transparent microsubstrate provides a distance-dependent ECL signal that can provide information about the kinetics, stability, and mechanism of the light emission process. In the present study, the ECL emission from rubrene and [Ru(bpy)(3)](2+) was used to model the system by carrying out experiments with the SECM and light-detecting apparatus inside an inert atmosphere box. We studied the influence of the distance between the two electrodes, d, and the annihilation kinetics on the ECL light emission profiles under steady-state conditions, as well as the ECL profiles when carrying out cyclic voltammetry (CV) at a fixed d. Experimental results are compared to simulated results obtained through commercial finite element method software. The light produced by annihilation of the ions was a function of d; stronger light was observed at smaller d. The distance dependence of the ECL emission allows the construction of light approach curves in a similar fashion as with the tip currents in the feedback mode of SECM. These ECL approach curves provide an additional channel to describe the reaction kinetics that lead to ECL; good agreement was found between the ECL approach curve emission profile and the simulated results for a fast, diffusion-limited second-order annihilation process (k(ann) > 10(7) M(-1) s(-1)). In the CV mode at fixed distance, the ECL emission of rubrene showed two distinct signals at different potentials when fixing the substrate to generate the radical cation and scanning the tip to generate the radical anion. The first signal (pre-emission) corresponded to an emission well before reaching the generation of the radical anion and was more intense on Au than on Pt. The second ECL signal showed the expected steady-state behavior from the second-order annihilation reaction and agreed well with the simulation. A comparison of the emission obtained with rubrene and [Ru(bpy)(3)](2+) to test the direct formation of lower energy triplets directly at the electrode showed that triplets are not the cause of the pre-emission observed. Wavelength selection experiments for the rubrene system showed that the pre-emission ECL signal also appeared slightly red-shifted with respect to the main luminophore emission; a possible explanation for this phenomenon is inverse photoemission, where the injection of highly energetic holes by the oxidized species into the negatively biased tip electrode causes emission of states in the metal that appear at a different wavelength than the singlet emission from the ECL luminophore.

Collaboration


Dive into the Mei Shen's collaboration.

Top Co-Authors

Avatar

Allen J. Bard

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jiyeon Kim

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ran Chen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Hui Zhu

South China University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge