Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Frazier is active.

Publication


Featured researches published by Melanie Frazier.


Nature Communications | 2015

Spatial and temporal changes in cumulative human impacts on the world’s ocean

Benjamin S. Halpern; Melanie Frazier; John Potapenko; Kenneth S. Casey; Kellee Koenig; Catherine Longo; Julia S. Stewart Lowndes; R. Cotton Rockwood; Elizabeth R. Selig; Kimberly A. Selkoe; Shaun Walbridge

Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.


The American Naturalist | 2006

Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”

Melanie Frazier; Raymond B. Huey; David Berrigan

Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.


Physiological and Biochemical Zoology | 2010

Thermodynamic Effects on Organismal Performance: Is Hotter Better?

Michael J. Angilletta; Raymond B. Huey; Melanie Frazier

Despite decades of research on the evolution of thermal physiology, at least one fundamental issue remains unresolved: whether the maximal performance of a genotype depends on its optimal temperature. One school argues that warm‐adapted genotypes will outperform cold‐adapted genotypes because high temperatures inevitably accelerate chemical reactions. Yet another school holds that biochemical adaptation can compensate for thermodynamic effects on performance. Here, we briefly discuss this theoretical debate and then summarize empirical studies that address whether hotter is better. In general, comparative and experimental studies support the view that hotter is better. Furthermore, recent modeling has shown that thermodynamic constraints impose unique selective pressures on thermal sensitivity. Nevertheless, the thermodynamic effect on maximal performance varies greatly among traits and taxa, suggesting the need to develop a more sophisticated view of thermodynamic constraints.


Respiratory Physiology & Neurobiology | 2006

Responses of terrestrial insects to hypoxia or hyperoxia.

Jon F. Harrison; Melanie Frazier; Joanna R. Henry; Alexander Kaiser; Cj Klok; Brenda Rascón

Oxygen is critically important for catabolic ATP generation but is also a dangerous source of reactive oxygen species. Insects respond to short-term exposure to hypoxia or hyperoxia with compensatory changes in spiracular opening and ventilation that reduce variation in internal Po2. Below critical Po2 values (Pc), nitric oxide and hypoxia inducible factor (HIF)-mediated pathways induce long-term responses such as compensatory tracheal growth, suppressed development, and acclimation of ventilation. Pc values are strongly affected by activity and ontogeny, due to changes in the ratio of tracheal conductance to metabolic rate. Although growth rates and development are suppressed by significant hypoxia in all species studied to date, adult body size is only affected in some species. Severe hyperoxia causes major oxidative stress and reduces survival, while moderate hyperoxia increases development times and body sizes in some species by unknown mechanisms.


Physiological and Biochemical Zoology | 2001

Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster.

Melanie Frazier; H. Arthur Woods; Jon F. Harrison

Although higher temperatures strongly stimulate ectothermic metabolic rates, they only slightly increase oxygen diffusion rates and decrease oxygen solubility. Consequently, we predicted that insect gas exchange systems would have more difficulty meeting tissue oxygen demands at higher temperatures. In this study, Drosophila melanogaster were reared from egg to adult in hyperoxic (40%), hypoxic (10%), and normoxic (21%) conditions and in temperatures ranging from 15°–31.5°C to examine the interactive effect of temperature and oxygen on development. Hyperoxia generally increased mass and growth rate at higher rearing temperatures. At lower rearing temperatures, however, hyperoxia had a very small effect on mass, did not affect growth rate, and lengthened time to eclosion. Relative to normoxia, flies reared in hypoxic conditions were generally smaller (mass and thorax length), had longer eclosion times, slower growth rates, and reduced survival. At cooler temperatures, hypoxia had relatively modest or nonsignificant effects on development, while at higher temperatures, the effects of hypoxia were large. These results suggest that higher temperatures reduce oxygen delivery capacity relative to tissue oxygen needs, which may partially explain why ectotherms are smaller when development occurs at higher temperatures.


Integrative and Comparative Biology | 2006

Into thin air: Physiology and evolution of alpine insects

Michael E. Dillon; Melanie Frazier; Robert K. Dudley

Numerous physical parameters that influence insect physiology vary substantially with altitude, including temperature, air density, and oxygen partial pressure. Here, we review existing literature and present new empirical data to better characterize the high-altitude environment, and then consider how this environment affects the physiology and evolution of insects. Using weather balloon data from fifty-three sites across the globe, we estimate a mean altitudinal temperature lapse rate of 6.0 °C/km. We also present empirically determined lapse rates for P(o(2)) and air density. The temperature decline with elevation may substantially compromise insect thermoregulation at high altitude. However, heat-transfer models predict that lower air density at elevation reduces convective heat loss of insects by to a surprisingly large degree. This effect combined with behavioral thermoregulation and the availability of buffered microhabitats make the net thermal consequences of high-altitude residence strongly context-specific. The decline in P(o(2)) with elevation may compromise insect development and physiology, but its effects are difficult to predict without simultaneously considering temperature and air density. Flying insects compensate for low air densities with both short-term responses, such as increased stroke amplitude (but not wingbeat frequency), and with long-term developmental and/or evolutionary increases in wing size relative to body size. Finally, in contrast to predictions based on Bergmanns Rule, a literature survey of thirty-six insect species suggests that those living in colder, higher altitudes do not tend to have larger body sizes.


The Journal of Experimental Biology | 2008

Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology

Melanie Frazier; Jon F. Harrison; Scott D. Kirkton; Stephen P. Roberts

SUMMARY We use a factorial experimental design to test whether rearing at colder temperatures shifts the lower thermal envelope for flight of Drosophila melanogaster Meigen to colder temperatures. D. melanogaster that developed in colder temperatures (15°C) had a significant flight advantage in cold air compared to flies that developed in warmer temperatures (28°C). At 14°C, cold-reared flies failed to perform a take-off flight∼ 47% of the time whereas warm-reared flies failed ∼94% of the time. At 18°C, cold- and warm-reared flies performed equally well. We also compared several traits in cold- and warm-developing flies to determine if cold-developing flies had better flight performance at cold temperatures due to changes in body mass, wing length, wing loading, relative flight muscle mass or wing-beat frequency. The improved ability to fly at low temperatures was associated with a dramatic increase in wing area and an increase in wing length (after controlling for wing area). Flies that developed at 15°C had∼ 25% more wing area than similarly sized flies that developed at 28°C. Cold-reared flies had slower wing-beat frequencies than similarly sized flies from warmer developmental environments, whereas other traits did not vary with developmental temperature. These results demonstrate that developmental plasticity in wing dimensions contributes to the improved flight performance of D. melanogaster at cold temperatures, and ultimately, may help D. melanogaster live in a wide range of thermal environments.


Integrative and Comparative Biology | 2002

Plants Versus Animals: Do They Deal with Stress in Different Ways?

Raymond B. Huey; Margen L. Carlson; Lisa Crozier; Melanie Frazier; Hayden Hamilton; Christopher D. G. Harley; Anhthu Hoang; Joel G. Kingsolver

Abstract Both plants and animals respond to stress by using adaptations that help them evade, tolerate, or recover from stress. In a synthetic paper A. D. Bradshaw (1972) noted that basic biological differences between plants and animals will have diverse evolutionary consequences, including those influencing how they deal with stress. For instance, Bradshaw argued that animals, because they have relatively well-developed sensory and locomotor capacities, can often use behavior and movement to evade or ameliorate environmental stresses. In contrast, he predicted that plants will have to emphasize increased physiological tolerance or phenotypic plasticity, and also that plants should suffer stronger selection and show more marked differentiation along environmental gradients. Here we briefly review the importance of behavior in mitigating stress, the behavioral capacities of animals and plants, and examples of plant responses that are functionally similar to behaviors of animals. Next, we try to test some of Bradshaws predictions. Unfortunately, critical data often proved non-comparable: plant and animal biologists often study different stressors (e.g., water versus heat) and measure different traits (photosynthesis versus locomotion). Nevertheless, we were able to test some of Bradshaws predictions and some related ones of our own. As Bradshaw predicted, the phenology of plants is more responsive to climate shifts than is that of animals and the micro-distributions of non-mobile, intertidal invertebrates (“plant” equivalents) are more sensitive to temperature than are those of mobile invertebrates. However, mortality selection is actually weaker for plants than for animals. We hope that our review not only redraws attention to some fascinating issues Bradshaw raised, but also encourages additional tests of his predictions. Such tests should be informative.


PLOS ONE | 2015

Patterns and Emerging Trends in Global Ocean Health

Benjamin S. Halpern; Catherine Longo; Julia S. Stewart Lowndes; Benjamin D. Best; Melanie Frazier; Steven K. Katona; Kristin M. Kleisner; Andrew A. Rosenberg; Courtney Scarborough; Elizabeth R. Selig

International and regional policies aimed at managing ocean ecosystem health need quantitative and comprehensive indices to synthesize information from a variety of sources, consistently measure progress, and communicate with key constituencies and the public. Here we present the second annual global assessment of the Ocean Health Index, reporting current scores and annual changes since 2012, recalculated using updated methods and data based on the best available science, for 221 coastal countries and territories. The Index measures performance of ten societal goals for healthy oceans on a quantitative scale of increasing health from 0 to 100, and combines these scores into a single Index score, for each country and globally. The global Index score improved one point (from 67 to 68), while many country-level Index and goal scores had larger changes. Per-country Index scores ranged from 41–95 and, on average, improved by 0.06 points (range -8 to +12). Globally, average scores increased for individual goals by as much as 6.5 points (coastal economies) and decreased by as much as 1.2 points (natural products). Annual updates of the Index, even when not all input data have been updated, provide valuable information to scientists, policy makers, and resource managers because patterns and trends can emerge from the data that have been updated. Changes of even a few points indicate potential successes (when scores increase) that merit recognition, or concerns (when scores decrease) that may require mitigative action, with changes of more than 10–20 points representing large shifts that deserve greater attention. Goal scores showed remarkably little covariance across regions, indicating low redundancy in the Index, such that each goal delivers information about a different facet of ocean health. Together these scores provide a snapshot of global ocean health and suggest where countries have made progress and where a need for further improvement exists.


Environmental Science & Technology | 2011

Enumerating Sparse Organisms in Ships' Ballast Water: Why Counting to 10 Is Not So Easy

A. Whitman Miller; Melanie Frazier; George Smith; Elgin S. Perry; Gregory M. Ruiz; Mario N. Tamburri

To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships’ ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed.

Collaboration


Dive into the Melanie Frazier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Whitman Miller

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah A. Reusser

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory M. Ruiz

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar

Henry Lee

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge