Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Galla is active.

Publication


Featured researches published by Melanie Galla.


Molecular Therapy | 2011

Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming

Eva Warlich; Johannes Kuehle; Tobias Cantz; Martijn H. Brugman; Tobias Maetzig; Melanie Galla; Adam Filipczyk; Stephan Halle; Hannes Klump; Hans R. Schöler; Christopher Baum; Timm Schroeder; Axel Schambach

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.


Gene Therapy | 2006

Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors

Axel Schambach; D Mueller; Melanie Galla; M M A Verstegen; G Wagemaker; Rainer Loew; Christopher Baum; Jens Bohne

Retroviral vectors with self-inactivating (SIN) long-terminal repeats not only increase the autonomy of the internal promoter but may also reduce the risk of insertional upregulation of neighboring alleles. However, gammaretroviral as opposed to lentiviral packaging systems produce suboptimal SIN vector titers, a major limitation for their clinical use. Northern blot data revealed that low SIN titers were associated with abundant transcription of internal rather than full-length transcripts in transfected packaging cells. When using the promoter of Rous sarcoma virus or a tetracycline-inducible promoter to generate full-length transcripts, we obtained a strong enhancement in titer (up to 4 × 107 transducing units per ml of unconcentrated supernatant). Dual fluorescence vectors and Northern blots revealed that promoter competition is a rate-limiting step of SIN vector production. SIN vector stocks pseudotyped with RD114 envelope protein had high transduction efficiency in human and non-human primate cells. This study introduces a new generation of efficient gammaretroviral SIN vectors as a platform for further optimizations of retroviral vector performance.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Protein transduction from retroviral Gag precursors

Christine Voelkel; Melanie Galla; Tobias Maetzig; Eva Warlich; Johannes Kuehle; Daniela Zychlinski; Juergen Bode; Tobias Cantz; Axel Schambach; Christopher Baum

Retroviral particles assemble a few thousand units of the Gag polyproteins. Proteolytic cleavage mediated by the retroviral protease forms the bioactive retroviral protein subunits before cell entry. We hypothesized that this process could be exploited for targeted, transient, and dose-controlled transduction of nonretroviral proteins into cultured cells. We demonstrate that gammaretroviral particles tolerate the incorporation of foreign protein at several positions of their Gag or Gag-Pol precursors. Receptor-mediated and thus potentially cell-specific uptake of engineered particles occurred within minutes after cell contact. Dose and kinetics of nonretroviral protein delivery were dependent upon the location within the polyprotein precursor. Proteins containing nuclear localization signals were incorporated into retroviral particles, and the proteins of interest were released from the precursor by the retroviral protease, recognizing engineered target sites. In contrast to integration-defective lentiviral vectors, protein transduction by retroviral polyprotein precursors was completely transient, as protein transducing retrovirus-like particles could be produced that did not transduce genes into target cells. Alternatively, bifunctional protein-delivering particle preparations were generated that maintained their ability to serve as vectors for retroviral transgenes. We show the potential of this approach for targeted genome engineering of induced pluripotent stem cells by delivering the site-specific DNA recombinase, Flp. Protein transduction of Flp after proteolytic release from the matrix position of Gag allowed excision of a lentivirally transduced cassette that concomitantly expresses the canonical reprogramming transcription factors (Oct4, Klf4, Sox2, c-Myc) and a fluorescent marker gene, thus generating induced pluripotent stem cells that are free of lentivirally transduced reprogramming genes.


Viruses | 2011

Gammaretroviral vectors: biology, technology and application.

Tobias Maetzig; Melanie Galla; Christopher Baum; Axel Schambach

Retroviruses are evolutionary optimized gene carriers that have naturally adapted to their hosts to efficiently deliver their nucleic acids into the target cell chromatin, thereby overcoming natural cellular barriers. Here we will review—starting with a deeper look into retroviral biology—how Murine Leukemia Virus (MLV), a simple gammaretrovirus, can be converted into an efficient vehicle of genetic therapeutics. Furthermore, we will describe how more rational vector backbones can be designed and how these so-called self-inactivating vectors can be pseudotyped and produced. Finally, we will provide an overview on existing clinical trials and how biosafety can be improved.


Journal of Virology | 2013

Bromo- and Extraterminal Domain Chromatin Regulators Serve as Cofactors for Murine Leukemia Virus Integration

Saumya Shree Gupta; Tobias Maetzig; Goedele N. Maertens; Azar Sharif; Michael Rothe; Magdalena Weidner-Glunde; Melanie Galla; Axel Schambach; Peter Cherepanov; Thomas F. Schulz

ABSTRACT Retroviral integrase (IN) proteins catalyze the permanent integration of proviral genomes into host DNA with the help of cellular cofactors. Lens epithelium-derived growth factor (LEDGF) is a cofactor for lentiviruses, including human immunodeficiency virus type 1 (HIV-1), and targets lentiviral integration toward active transcription units in the host genome. In contrast to lentiviruses, murine leukemia virus (MLV), a gammaretrovirus, tends to integrate near transcription start sites. Here, we show that the bromodomain and extraterminal domain (BET) proteins BRD2, BRD3, and BRD4 interact with gammaretroviral INs and stimulate the catalytic activity of MLV IN in vitro. We mapped the interaction site to a characteristic structural feature within the BET protein extraterminal (ET) domain and to three amino acids in MLV IN. The ET domains of different BET proteins stimulate MLV integration in vitro and, in the case of BRD2, also in vivo. Furthermore, two small-molecule BET inhibitors, JQ1 and I-BET, decrease MLV integration and shift it away from transcription start sites. Our data suggest that BET proteins might act as chromatin-bound acceptors for the MLV preintegration complex. These results could pave a way to redirecting MLV DNA integration as a basis for creating safer retroviral vectors.


Molecular Pharmaceutics | 2011

Development of novel efficient SIN vectors with improved safety features for Wiskott-Aldrich syndrome stem cell based gene therapy.

Inés Avedillo Díez; Daniela Zychlinski; Emanuele G. Coci; Melanie Galla; Ute Modlich; Ricardo A. Dewey; Adrian Schwarzer; Tobias Maetzig; Nonsikelelo Mpofu; Elmar Jaeckel; Kaan Boztug; Christopher Baum; Christoph Klein; Axel Schambach

Gene therapy is a promising therapeutic approach to treat primary immunodeficiencies. Indeed, the clinical trial for the Wiskott-Aldrich Syndrome (WAS) that is currently ongoing at the Hannover Medical School (Germany) has recently reported the correction of all affected cell lineages of the hematopoietic system in the first treated patients. However, an extensive study of the clonal inventory of those patients reveals that LMO2, CCND2 and MDS1/EVI1 were preferentially prevalent. Moreover, a first leukemia case was observed in this study, thus reinforcing the need of developing safer vectors for gene transfer into HSC in general. Here we present a novel self-inactivating (SIN) vector for the gene therapy of WAS that combines improved safety features. We used the elongation factor 1 alpha (EFS) promoter, which has been extensively evaluated in terms of safety profile, to drive a codon-optimized human WASP cDNA. To test vector performance in a more clinically relevant setting, we transduced murine HSPC as well as human CD34+ cells and also analyzed vector efficacy in their differentiated myeloid progeny. Our results show that our novel vector generates comparable WAS protein levels and is as effective as the clinically used LTR-driven vector. Therefore, the described SIN vectors appear to be good candidates for potential use in a safer new gene therapy protocol for WAS, with decreased risk of insertional mutagenesis.


Immunity | 2016

In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity

Stephan Halle; Kirsten A. Keyser; Felix R. Stahl; Andreas Busche; Anja Marquardt; Xiang Zheng; Melanie Galla; Vigo Heissmeyer; Katrin Heller; Jasmin Boelter; Karen Wagner; Yvonne Bischoff; Rieke Martens; Asolina Braun; Kathrin Werth; Alexey Uvarovskii; Harald Kempf; Michael Meyer-Hermann; Ramon Arens; Melanie Kremer; Gerd Sutter; Martin Messerle; Reinhold Förster

Summary According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity.


Nucleic Acids Research | 2011

Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery

Melanie Galla; Axel Schambach; Christine S. Falk; Tobias Maetzig; Johannes Kuehle; Kathrin Lange; Daniela Zychlinski; Niels Heinz; Martijn H. Brugman; Gudrun Göhring; Zsuzsanna Izsvák; Zoltán Ivics; Christopher Baum

The Sleeping Beauty (SB) transposase and its newly developed hyperactive variant, SB100X, are of increasing interest for genome modification in experimental models and gene therapy. The potential cytotoxicity of transposases requires careful assessment, considering that residual integration events of transposase expression vectors delivered by physicochemical transfection or episomal retroviral vectors may lead to permanent transposase expression and resulting uncontrollable transposition. Comparing retrovirus-based approaches for delivery of mRNA, episomal DNA or integrating DNA, we found that conventional SB transposase, SB100X and a newly developed codon-optimized SB100Xo may trigger premitotic arrest and apoptosis. Cell stress induced by continued SB overexpression was self-limiting due to the induction of cell death, which occurred even in the absence of a co-transfected transposable element. The cytotoxic effects of SB transposase were strictly dose dependent and heralded by induction of p53 and c-Jun. Inactivating mutations in SB’s catalytic domain could not abrogate cytotoxicity, suggesting a mechanism independent of DNA cleavage activity. An improved approach of retrovirus particle-mediated mRNA transfer allowed transient and dose-controlled expression of SB100X, supported efficient transposition and prevented cytotoxicity. Transposase-mediated gene transfer can thus be tuned to maintain high efficiency in the absence of overt cell damage.


PLOS Genetics | 2014

Genetic Deletion of SEPT7 Reveals a Cell Type-Specific Role of Septins in Microtubule Destabilization for the Completion of Cytokinesis

Manoj B. Menon; Akihiro Sawada; Anuhar Chaturvedi; Pooja Mishra; Karin Schuster-Gossler; Melanie Galla; Axel Schambach; Achim Gossler; Reinhold Förster; Michael Heuser; Alexey Kotlyarov; Makoto Kinoshita; Matthias Gaestel

Cytokinesis terminates mitosis, resulting in separation of the two sister cells. Septins, a conserved family of GTP-binding cytoskeletal proteins, are an absolute requirement for cytokinesis in budding yeast. We demonstrate that septin-dependence of mammalian cytokinesis differs greatly between cell types: genetic loss of the pivotal septin subunit SEPT7 in vivo reveals that septins are indispensable for cytokinesis in fibroblasts, but expendable in cells of the hematopoietic system. SEPT7-deficient mouse embryos fail to gastrulate, and septin-deficient fibroblasts exhibit pleiotropic defects in the major cytokinetic machinery, including hyperacetylation/stabilization of microtubules and stalled midbody abscission, leading to constitutive multinucleation. We identified the microtubule depolymerizing protein stathmin as a key molecule aiding in septin-independent cytokinesis, demonstrated that stathmin supplementation is sufficient to override cytokinesis failure in SEPT7-null fibroblasts, and that knockdown of stathmin makes proliferation of a hematopoietic cell line sensitive to the septin inhibitor forchlorfenuron. Identification of septin-independent cytokinesis in the hematopoietic system could serve as a key to identify solid tumor-specific molecular targets for inhibition of cell proliferation.


Journal of Virology | 2010

Self-Inactivating Alpharetroviral Vectors with a Split-Packaging Design

Julia D. Suerth; Tobias Maetzig; Melanie Galla; Christopher Baum; Axel Schambach

ABSTRACT Accidental insertional activation of proto-oncogenes and potential vector mobilization pose serious challenges for human gene therapy using retroviral vectors. Comparative analyses of integration sites of different retroviral vectors have elucidated distinct target site preferences, highlighting vectors based on the alpharetrovirus Rous sarcoma virus (RSV) as those with the most neutral integration spectrum. To date, alpharetroviral vector systems are based mainly on single constructs containing viral coding sequences and intact long terminal repeats (LTR). Even though they are considered to be replication incompetent in mammalian cells, the transfer of intact viral genomes is unacceptable for clinical applications, due to the risk of vector mobilization and the potentially immunogenic expression of viral proteins, which we minimized by setting up a split-packaging system expressing the necessary viral proteins in trans. Moreover, intact LTRs containing transcriptional elements are capable of activating cellular genes. By removing most of these transcriptional elements, we were able to generate a self-inactivating (SIN) alpharetroviral vector, whose LTR transcriptional activity is strongly reduced and whose transgene expression can be driven by an internal promoter of choice. Codon optimization of the alpharetroviral Gag/Pol expression construct and further optimization steps allowed the production of high-titer self-inactivating vector particles in human cells. We demonstrate proof of principle for the versatility of alpharetroviral SIN vectors for the genetic modification of murine and human hematopoietic cells at a low multiplicity of infection.

Collaboration


Dive into the Melanie Galla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martijn H. Brugman

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Modlich

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge