Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie K. Vanderhoof is active.

Publication


Featured researches published by Melanie K. Vanderhoof.


Landscape Ecology | 2016

Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States

Melanie K. Vanderhoof; Laurie C. Alexander; M. Jason Todd

ContextQuantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways.ObjectivesWe examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region.MethodsWetland extent was derived over a time series (1990–2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected.ResultsWetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland–wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density.ConclusionsCharacterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of (1) climate-driven variation in wetness conditions and (2) within-region variation in wetland and stream spatial arrangements.


Journal of The American Water Resources Association | 2018

Connectivity of streams and wetlands to downstream waters: An integrated systems framework

Scott G. Leibowitz; Parker J. Wigington; Kate A. Schoefield; Laurie C. Alexander; Melanie K. Vanderhoof; Heather E. Golden

Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field-based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity.


Remote Sensing | 2017

Integrating Radarsat-2, Lidar, and Worldview-3 Imagery to maximize detection of forested inundation extent in the Delmarva Peninsula, USA

Melanie K. Vanderhoof; Hayley E. Distler; Di Ana Teresa G. Mendiola; Megan Lang

Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring within both Maryland and Delaware. We integrated six quad-polarized Radarsat-2 images, Worldview-3 imagery, and an enhanced topographic wetness index in a random forest model. Output maps were filtered using light detection and ranging (lidar)-derived depressions to maximize the accuracy of forested inundation extent. Overall accuracy within the integrated and filtered model was 94.3%, with 5.5% and 6.0% errors of omission and commission for inundation, respectively. Accuracy of inundation maps obtained using Radarsat-2 alone were likely detrimentally affected by less than ideal angles of incidence and recent precipitation, but were likely improved by targeting the period between snowmelt and leaf-out for imagery collection. Across the six Radarsat-2 dates, filtering inundation outputs by lidar-derived depressions slightly elevated errors of omission for water (+1.0%), but decreased errors of commission (−7.8%), resulting in an average increase of 5.4% in overall accuracy. Depressions were derived from lidar datasets collected under both dry and average wetness conditions. Although antecedent wetness conditions influenced the abundance and total area mapped as depression, the two versions of the depression datasets showed a similar ability to reduce error in the inundation maps. Accurate mapping of surface water is critical to predicting and monitoring the effect of human-induced change and interannual variability on water quantity and quality.


Journal of The American Water Resources Association | 2018

Biota connect aquatic habitats throughout freshwater ecosystem mosaics

Kate A. Schofield; Laurie C. Alexander; Caroline E. Ridley; Melanie K. Vanderhoof; Ken M. Fritz; Bradley C. Autrey; Julie E. DeMeester; William G. Kepner; Charles R. Lane; Scott G. Leibowitz; Amina I. Pollard

Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.


Water Resources Research | 2018

Estimating Wetland Connectivity to Streams in the Prairie Pothole Region: An Isotopic and Remote Sensing Approach

J. R. Brooks; D. M. Mushet; Melanie K. Vanderhoof; S. G. Leibowitz; Jay R. Christensen; B. P. Neff; D. O. Rosenberry; W. D. Rugh; Laurie C. Alexander

Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding the reliance of stream flow on inputs from wetlands. We used the isotopic evaporation signal in water and remote sensing to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched prairie-pothole wetlands. Groundwater adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment, indicating that enriched surface water did not contribute significantly to groundwater discharging into Pipestem Creek. The estimated surface-water area necessary to generate the evaporation signal within Pipestem Creek was highly dynamic, varied primarily with the amount of discharge, and was typically greater than the immediate Pipestem Creek surface-water area, indicating that surficial flow from wetlands contributed to stream flow throughout the summer. We propose a dynamic range of spilling thresholds for prairie-pothole wetlands across the watershed allowing for wetland inputs even during low flow periods. Combining Landsat estimates with the isotopic approach allowed determination of potential (Landsat) and actual (isotope) contributing areas in wetland-dominated systems. This combined approach can give insights into the changes in location and magnitude of surface water and groundwater pathways over time. This approach can be used in other areas where evaporation from wetlands results in a sufficient evaporative isotopic signal.


Journal of The American Water Resources Association | 2018

Featured collection introduction: Connectivity of streams and wetlands to downstream waters

Laurie C. Alexander; Ken M. Fritz; Kate A. Schofield; Bradley C. Autrey; Julie E. DeMeester; Heather E. Golden; David C. Goodrich; William G. Kepner; Hadas Raanan Kiperwas Kiperwas; Charles R. Lane; Stephen D. LeDuc; Scott G. Leibowitz; Michael G. McManus; Amina I. Pollard; Caroline E. Ridley; Melanie K. Vanderhoof; Parker J. Wigington

Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act’s frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science-based efforts to provide safe, reliable sources of fresh water for present and future generations. (KEY TERMS: ecological integrity; river networks; streams; wetlands; floodplains; riparian areas; watersheds; U.S. Clean Water Act.) Alexander, Laurie C., Ken M. Fritz, Kate A. Schofield, Bradley C. Autrey, Julie E. DeMeester, Heather E. Golden, David C. Goodrich, William G. Kepner, Hadas R. Kiperwas, Charles R. Lane, Stephen D. LeDuc, Scott G. Leibowitz, Michael G. McManus, Amina I. Pollard, Caroline E. Ridley, Melanie K. Vanderhoof, and Parker J. Wigington, Jr., 2018. Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association (JAWRA) 54(2): 287–297. https://doi.org/10.1111/ 1752-1688.12630 Paper No. JAWRA-17-0107-P of the Journal of the American Water Resources Association (JAWRA). Received July 24, 2017; accepted January 22, 2018.


Hydrological Processes | 2018

Estimating restorable wetland water storage at landscape scales

Charles Nathan Jones; Grey R. Evenson; Daniel L. McLaughlin; Melanie K. Vanderhoof; Megan W. Lang; Greg McCarty; Heather E. Golden; Charles R. Lane; Laurie C. Alexander

Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.


Remote Sensing | 2017

Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery

Melanie K. Vanderhoof; Nicole M. Brunner; Yen-Ju G. Beal; Todd J. Hawbaker

The U.S. Geological Survey has produced the Landsat Burned Area Essential Climate Variable (BAECV) product for the conterminous United States (CONUS), which provides wall-to-wall annual maps of burned area at 30 m resolution (1984–2015). Validation is a critical component in the generation of such remotely sensed products. Previous efforts to validate the BAECV relied on a reference dataset derived from Landsat, which was effective in evaluating the product across its timespan but did not allow for consideration of inaccuracies imposed by the Landsat sensor itself. In this effort, the BAECV was validated using 286 high-resolution images, collected from GeoEye-1, QuickBird-2, Worldview-2 and RapidEye satellites. A disproportionate sampling strategy was utilized to ensure enough burned area pixels were collected. Errors of omission and commission for burned area averaged 22 ± 4% and 48 ± 3%, respectively, across CONUS. Errors were lowest across the western U.S. The elevated error of commission relative to omission was largely driven by patterns in the Great Plains which saw low errors of omission (13 ± 13%) but high errors of commission (70 ± 5%) and potentially a region-growing function included in the BAECV algorithm. While the BAECV reliably detected agricultural fires in the Great Plains, it frequently mapped tilled areas or areas with low vegetation as burned. Landscape metrics were calculated for individual fire events to assess the influence of image resolution (2 m, 30 m and 500 m) on mapping fire heterogeneity. As the spatial detail of imagery increased, fire events were mapped in a patchier manner with greater patch and edge densities, and shape complexity, which can influence estimates of total greenhouse gas emissions and rates of vegetation recovery. The increasing number of satellites collecting high-resolution imagery and rapid improvements in the frequency with which imagery is being collected means greater opportunities to utilize these sources of imagery for Landsat product validation.


Remote Sensing | 2018

Applying High-Resolution Imagery to Evaluate Restoration-Induced Changes in Stream Condition, Missouri River Headwaters Basin, Montana

Melanie K. Vanderhoof; Clifton Burt

Degradation of streams and associated riparian habitat across the Missouri River Headwaters Basin has motivated several stream restoration projects across the watershed. Many of these projects install a series of beaver dam analogues (BDAs) to aggrade incised streams, elevate local water tables, and create natural surface water storage by reconnecting streams with their floodplains. Satellite imagery can provide a spatially continuous mechanism to monitor the effects of these in-stream structures on stream surface area. However, remote sensing-based approaches to map narrow (e.g., <5 m wide) linear features such as streams have been under-developed relative to efforts to map other types of aquatic systems, such as wetlands or lakes. We mapped pre- and post-restoration (one to three years post-restoration) stream surface area and riparian greenness at four stream restoration sites using Worldview-2 and 3 images as well as a QuickBird-2 image. We found that panchromatic brightness and eCognition-based outputs (0.5 m resolution) provided high-accuracy maps of stream surface area (overall accuracy ranged from 91% to 99%) for streams as narrow as 1.5 m wide. Using image pairs, we were able to document increases in stream surface area immediately upstream of BDAs as well as increases in stream surface area along the restoration reach at Robb Creek, Alkali Creek and Long Creek (South). Although Long Creek (North) did not show a net increase in stream surface area along the restoration reach, we did observe an increase in riparian greenness, suggesting increased water retention adjacent to the stream. As high-resolution imagery becomes more widely collected and available, improvements in our ability to provide spatially continuous monitoring of stream systems can effectively complement more traditional field-based and gage-based datasets to inform watershed management.


Journal of The American Water Resources Association | 2018

Efficient delineation of nested depression hierarchy in digital elevation models for hydrological analysis using level-set method

Qiusheng Wu; Charles R. Lane; Lei Wang; Melanie K. Vanderhoof; Jay R. Christensen; Hongxing Liu

In terrain analysis and hydrological modeling, surface depressions (or sinks) in a digital elevation model (DEM) are commonly treated as artifacts and thus filled and removed to create a depressionless DEM. Various algorithms have been developed to identify and fill depressions in DEMs during the past decades. However, few studies have attempted to delineate and quantify the nested hierarchy of actual depressions, which can provide crucial information for characterizing surface hydrologic connectivity and simulating the fill-merge-spill hydrological process. In this paper, we present an innovative and efficient algorithm for delineating and quantifying nested depressions in DEMs using the level-set method based on graph theory. The proposed level-set method emulates water level decreasing from the spill point along the depression boundary to the lowest point at the bottom of a depression. By tracing the dynamic topological changes (i.e., depression splitting/merging) within a compound depression, the level-set method can construct topological graphs and derive geometric properties of the nested depressions. The experimental results of two fine-resolution LiDAR-derived DEMs show that the raster-based level-set algorithm is much more efficient (~150 times faster) than the vector-based contour tree method. The proposed level-set algorithm has great potential for being applied to large-scale ecohydrological analysis and watershed modeling.

Collaboration


Dive into the Melanie K. Vanderhoof's collaboration.

Top Co-Authors

Avatar

Laurie C. Alexander

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Todd J. Hawbaker

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Charles R. Lane

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jay R. Christensen

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Yen-Ju G. Beal

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Heather E. Golden

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Scott G. Leibowitz

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Amina I. Pollard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Bradley C. Autrey

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Caroline E. Ridley

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge