Melanie Krebs
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melanie Krebs.
The Plant Cell | 2010
Corrado Viotti; Julia Bubeck; York-Dieter Stierhof; Melanie Krebs; Markus Langhans; Willy A. M. van den Berg; Walter Van Dongen; Sandra Richter; Niko Geldner; Junpei Takano; Gerd Jürgens; Sacco C. de Vries; David G. Robinson; Karin Schumacher
This study examines secretory and endocytotic trafficking in Arabidopsis by tracking the movement of a brassinosteroid receptor and a boron exporter through the endomembrane system. Both endocytotic and secretory cargo travel through the trans-Golgi network/early endosome (TGN/EE), and the TGN/EE is shown to be an independent organelle that only transiently associates with the Golgi. Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Melanie Krebs; Diana Beyhl; Esther Görlich; Khaled A. S. Al-Rasheid; Irene Marten; York-Dieter Stierhof; Rainer Hedrich; Karin Schumacher
The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H+-ATPase (V-ATPase) and the vacuolar H+-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn2+/H+-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na+/H+-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.
Plant Journal | 2012
Melanie Krebs; Katrin Held; Andreas Binder; Kenji Hashimoto; Griet Den Herder; Martin Parniske; Jörg Kudla; Karin Schumacher
Temporally and spatially defined calcium signatures are integral parts of numerous signalling pathways. Monitoring calcium dynamics with high spatial and temporal resolution is therefore critically important to understand how this ubiquitous second messenger can control diverse cellular responses. Yellow cameleons (YCs) are fluorescence resonance energy transfer (FRET)-based genetically encoded Ca(2+) -sensors that provide a powerful tool to monitor the spatio-temporal dynamics of Ca(2+) fluxes. Here we present an advanced set of vectors and transgenic lines for live cell Ca(2+) imaging in plants. Transgene silencing mediated by the cauliflower mosaic virus (CaMV) 35S promoter has severely limited the application of nanosensors for ions and metabolites and we have thus used the UBQ10 promoter from Arabidopsis and show here that this results in constitutive and stable expression of YCs in transgenic plants. To improve the spatial resolution, our vector repertoire includes versions of YCs that can be targeted to defined locations. Using this toolkit, we identified temporally distinct responses to external ATP at the plasma membrane, in the cytosol and in the nucleus of neighbouring root cells. Moreover analysis of Ca(2+) dynamics in Lotus japonicus revealed distinct Nod factor induced Ca(2+) spiking patterns in the nucleus and the cytosol. Consequently, the constructs and transgenic lines introduced here enable a detailed analysis of Ca(2+) dynamics in different cellular compartments and in different plant species and will foster novel approaches to decipher the temporal and spatial characteristics of calcium signatures.
The Plant Cell | 2008
Angela Brüx; Tzu-Yin Liu; Melanie Krebs; York-Dieter Stierhof; Jan U. Lohmann; Otto Miersch; Claus Wasternack; Karin Schumacher
Regulated cell expansion allows plants to adapt their morphogenesis to prevailing environmental conditions. Cell expansion is driven by turgor pressure created by osmotic water uptake and is restricted by the extensibility of the cell wall, which in turn is regulated by the synthesis, incorporation, and cross-linking of new cell wall components. The vacuolar H+-ATPase (V-ATPase) could provide a way to coordinately regulate turgor pressure and cell wall synthesis, as it energizes the secondary active transport of solutes across the tonoplast and also has an important function in the trans-Golgi network (TGN), which affects synthesis and trafficking of cell wall components. We have previously shown that det3, a mutant with reduced V-ATPase activity, has a severe defect in cell expansion. However, it was not clear if this is caused by a defect in turgor pressure or in cell wall synthesis. Here, we show that inhibition of the tonoplast-localized V-ATPase subunit isoform VHA-a3 does not impair cell expansion. By contrast, inhibition of the TGN-localized isoform VHA-a1 is sufficient to restrict cell expansion. Furthermore, we provide evidence that the reduced hypocotyl cell expansion in det3 is conditional and due to active, hormone-mediated growth inhibition caused by a cell wall defect.
Current Opinion in Plant Biology | 2010
Karin Schumacher; Melanie Krebs
About 30 years ago seminal reports of anion-sensitive proton-pumping activity associated with microsomal membranes initiated research on the plant vacuolar-type H(+)-ATPase (V-ATPase, VHA). Since, it has been firmly established that these complex molecular machines are essential for what can be defined as cellular logistics. In a eukaryotic cell, the flow of goods between compartments is achieved either by protein-mediated membrane transport or via vesicular trafficking. Over the past years, it has become increasingly clear that V-ATPases do not only energize secondary active transport but are also important regulators of membrane trafficking.
The Plant Cell | 2013
Corrado Viotti; Falco Krüger; Melanie Krebs; Christoph Neubert; Fabian Fink; Upendo Lupanga; David Scheuring; Yohann Boutté; Márcia Frescatada-Rosa; Susanne Wolfenstetter; Norbert Sauer; Stefan Hillmer; Markus Grebe; Karin Schumacher
This work uses genetic and pharmacological interference in combination with live-cell imaging, three-dimensional reconstruction, and electron microscopy to monitor trafficking to the tonoplast of the two proton pumps, V-ATPase and V-PPase. The results provide strong evidence for a Golgi-independent route of vacuolar biogenesis in plant cells. Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H+-pyrophosphatase and the vacuolar H+-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)–Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.
Current Biology | 2014
Matyáš Fendrych; Tom Van Hautegem; Matthias Van Durme; Yadira Olvera-Carrillo; Marlies Huysmans; Mansour Karimi; Saskia Lippens; Christopher J. Guérin; Melanie Krebs; Karin Schumacher; Moritz K. Nowack
BACKGROUND The root cap is a plant organ that ensheathes the meristematic stem cells at the root tip. Unlike other plant organs, the root cap shows a rapid cellular turnover, balancing constant cell generation by specific stem cells with the disposal of differentiated cells at the root cap edge. This cellular turnover is critical for the maintenance of root cap size and its position around the growing root tip, but how this is achieved and controlled in the model plant Arabidopsis thaliana remains subject to contradictory hypotheses. RESULTS Here, we show that a highly organized cell death program is the final step of lateral root cap differentiation and that preparation for cell death is transcriptionally controlled by ANAC033/SOMBRERO. Precise timing of cell death is critical for the elimination of root cap cells before they fully enter the root elongation zone, which in turn is important in order to allow optimal root growth. Root cap cell death is followed by a rapid cell-autonomous corpse clearance and DNA fragmentation dependent on the S1-P1 type nuclease BFN1. CONCLUSIONS Based on these results, we propose a novel concept in plant development that recognizes programmed cell death as a mechanism for maintaining organ size and tissue homeostasis in the Arabidopsis root cap.
Plant Journal | 2007
Jennifer von der Fecht-Bartenbach; Martin Bogner; Melanie Krebs; York-Dieter Stierhof; Karin Schumacher; Uwe Ludewig
Anion transporting proteins of the CLC type are involved in anion homeostasis in a variety of organisms. CLCs from Arabidopsis have been shown to participate in nitrate accumulation and storage. In this study, the physiological role of the functional chloride transporter AtCLC-d from Arabidopsis was investigated. AtCLC-d is weakly expressed in various tissues, including the root. When transiently expressed as a GFP fusion in protoplasts, it co-localized with the VHA-a1 subunit of the proton-transporting V-type ATPase in the trans-Golgi network (TGN). Stable expression in plants showed that it co-localized with the endocytic tracer dye FM4-64 in a brefeldin A-sensitive compartment. Immunogold electron microscopy confirmed the localization of AtCLC-d to the TGN. Disruption of the AtCLC-d gene by a T-DNA insertion did not affect the nitrate and chloride contents. The overall morphology of these clcd-1 plants was similar to that of the wild-type, but root growth on synthetic medium was impaired. Moreover, the sensitivity of hypocotyl elongation to treatment with concanamycin A, a blocker of the V-ATPase, was stronger in the clcd-1 mutant. These phenotypes could be complemented by overexpression of AtCLC-d in the mutant background. The results suggest that the luminal pH in the trans-Golgi network is adjusted by AtCLC-d-mediated transport of a counter anion such as Cl− or NO3−.
Developmental Cell | 2014
Christoph M. Schuster; Christophe Gaillochet; Anna Medzihradszky; Wolfgang Busch; Gabor Daum; Melanie Krebs; Andreas Kehle; Jan U. Lohmann
Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated.
Molecular Plant | 2015
Nana F. Keinath; Rainer Waadt; Rik Brugman; Julian I. Schroeder; Guido Grossmann; Karin Schumacher; Melanie Krebs
Intracellular Ca(2+) transients are an integral part of the signaling cascade during pathogen-associated molecular pattern (PAMP)-triggered immunity in plants. Yet, our knowledge about the spatial distribution of PAMP-induced Ca(2+) signals is limited. Investigation of cell- and tissue-specific properties of Ca(2+)-dependent signaling processes requires versatile Ca(2+) reporters that are able to extract spatial information from cellular and subcellular structures, as well as from whole tissues over time periods from seconds to hours. Fluorescence-based reporters cover both a broad spatial and temporal range, which makes them ideally suited to study Ca(2+) signaling in living cells. In this study, we compared two fluorescence-based Ca(2+) sensors: the Förster resonance energy transfer (FRET)-based reporter yellow cameleon NES-YC3.6 and the intensity-based sensor R-GECO1. We demonstrate that R-GECO1 exhibits a significantly increased signal change compared with ratiometric NES-YC3.6 in response to several stimuli. Due to its superior sensitivity, R-GECO1 is able to report flg22- and chitin-induced Ca(2+) signals on a cellular scale, which allowed identification of defined [Ca(2+)]cyt oscillations in epidermal and guard cells in response to the fungal elicitor chitin. Moreover, we discovered that flg22- and chitin-induced Ca(2+) signals in the root initiate from the elongation zone.