Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Pritchard is active.

Publication


Featured researches published by Melanie Pritchard.


Genes & Development | 2008

The Ets transcription factor Elf5 specifies mammary alveolar cell fate.

Samantha R. Oakes; Matthew J. Naylor; Marie-Liesse Asselin-Labat; Katrina Blazek; Margaret Gardiner-Garden; Heidi N. Hilton; Michael Kazlauskas; Melanie Pritchard; Lewis A. Chodosh; Peter L. Pfeffer; Geoffrey J. Lindeman; Jane E. Visvader; Christopher J. Ormandy

Hormonal cues regulate mammary development, but the consequent transcriptional changes and cell fate decisions are largely undefined. We show that knockout of the prolactin-regulated Ets transcription factor Elf5 prevented formation of the secretory epithelium during pregnancy. Conversely, overexpression of Elf5 in an inducible transgenic model caused alveolar differentiation and milk secretion in virgin mice, disrupting ductal morphogenesis. CD61+ luminal progenitor cells accumulated in Elf5-deficient mammary glands and were diminished in glands with Elf5 overexpression. Thus Elf5 specifies the differentiation of CD61+ progenitors to establish the secretory alveolar lineage during pregnancy, providing a link between prolactin, transcriptional events, and alveolar development.


The FASEB Journal | 2007

Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin.

Kelvin J.A. Davies; Gennady Ermak; Beverley A. Rothermel; Melanie Pritchard; Joseph Heitman; Joohong Ahnn; Flávio Henrique-Silva; Dana R. Crawford; Silvia Canaider; Pierluigi Strippoli; Paolo Carinci; Kyung-Tai Min; Deborah S. Fox; Kyle W. Cunningham; Rhonda Bassel-Duby; Eric N. Olson; Zhuohua Zhang; R. Sanders Williams; Hans-Peter Gerber; Mercè Pérez-Riba; Hisao Seo; Xia Cao; Claude B. Klee; Juan Miguel Redondo; Lois J. Maltais; Elspeth A. Bruford; Sue Povey; Jeffery D. Molkentin; Frank McKeon; Elia J. Duh

Kelvin J. A. Davies,* Gennady Ermak,* Beverley A. Rothermel, Melanie Pritchard, Joseph Heitman, Joohong Ahnn, Flavio Henrique-Silva, Dana Crawford, Silvia Canaider,** Pierluigi Strippoli,** Paolo Carinci,** Kyung-Tai Min, Deborah S. Fox, Kyle W. Cunningham, Rhonda Bassel-Duby, Eric N. Olson, Zhuohua Zhang, R. Sanders Williams, Hans-Peter Gerber,*** Merce Perez-Riba, Hisao Seo, Xia Cao, Claude B. Klee, Juan Miguel Redondo, Lois J. Maltais, Elspeth A. Bruford, Sue Povey, Jeffery D. Molkentin,**** Frank D. McKeon, Elia J. Duh, Gerald R. Crabtree,§§§§ Martha S. Cyert, Susana de la Luna, and Xavier Estivill


The EMBO Journal | 2005

Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation.

Jiong Zhou; Renee Chehab; Josephine Tkalcevic; Matthew J. Naylor; Jessica Harris; Trevor J. Wilson; Sue Tsao; Irene Tellis; Silva Zavarsek; Dakang Xu; Erika J. Lapinskas; Jane E. Visvader; Geoffrey J. Lindeman; Ross S Thomas; Christopher J. Ormandy; Paul J. Hertzog; Ismail Kola; Melanie Pritchard

Elf5 is an epithelial‐specific ETS factor. Embryos with a null mutation in the Elf5 gene died before embryonic day 7.5, indicating that Elf5 is essential during mouse embryogenesis. Elf5 is also required for proliferation and differentiation of mouse mammary alveolar epithelial cells during pregnancy and lactation. The loss of one functional allele led to complete developmental arrest of the mammary gland in pregnant Elf5 heterozygous mice. A quantitative mRNA expression study and Western blot analysis revealed that decreased expression of Elf5 correlated with the downregulation of milk proteins in Elf5+/− mammary glands. Mammary gland transplants into Rag−/− mice demonstrated that Elf5+/− mammary alveolar buds failed to develop in an Elf5+/+ mammary fat pad during pregnancy, demonstrating an epithelial cell autonomous defect. Elf5 expression was reduced in Prolactin receptor (Prlr) heterozygous mammary glands, which phenocopy Elf5+/− glands, suggesting that Elf5 and Prlr are in the same pathway. Our data demonstrate that Elf5 is essential for developmental processes in the embryo and in the mammary gland during pregnancy.


Human Molecular Genetics | 2008

Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities

Yong Yu; Po-Yin Chu; David N. Bowser; Damien J. Keating; Daphne Dubach; Ian Steward Harper; Josephine Tkalcevic; David Finkelstein; Melanie Pritchard

Enlarged early endosomes in the neurons of young Down syndrome (DS) and pre-Alzheimers disease (AD) brains suggest that a disturbance in endocytosis is one of the earliest hallmarks of AD pathogenesis in both conditions. We identified a chromosome 21 gene, Intersectin-1 (ITSN1) that is up-regulated in DS brains and has a putative function in endocytosis and vesicle trafficking. To elucidate the function of ITSN1 and assess its contribution to endocytic defects associated with DS and AD, we generated Itsn1 null mice. In knockout mice we found alterations in a number of parameters associated with endocytic and vesicle trafficking events. We found a reduced number of exocytosis events in chromaffin cells and a slowing of endocytosis in neurons. Endosome size was increased in neurons and NGF levels were reduced in the septal region of the brain. Our data is the first indication that Itsn1 has a role in endocytosis in an in vivo mammalian model, and that a disruption in Itsn1 expression causes a disturbance in vesicle trafficking and endocytic function in the brain. These results imply a role for ITSN1 in the early endocytic anomalies reported in DS brains which may have ramifications for the onset of AD.


Mechanisms of Development | 2001

Dscr1, a novel endogenous inhibitor of calcineurin signaling, is expressed in the primitive ventricle of the heart and during neurogenesis

Caty Casas; Salvador Martinez; Melanie Pritchard; Juan-José Fuentes; Marga Nadal; Jordi Guimerà; Mariona Arbones; Jesús Flórez; Eduardo Soriano; Xavier Estivill; Soledad Alcántara

We have demonstrated that DSCR1 acts as a negative regulator of calcineurin-mediated signaling and that its transcript is overexpressed in the Down syndrome (DS) fetal brain. To evaluate the possible involvement of DSCR1 in DS, we have cloned the mouse gene and analyzed its expression pattern in the central nervous system (CNS). Early expression of Dscr1 is detected mainly in the heart tube and in the CNS in rhombomere 4 and the pretectum. From embryonic day 14.5 onwards, Dscr1 is widely distributed in the CNS but becomes more restricted as the brain matures. We confirmed its neuronal expression pattern in the adult, preferentially in Purkinje and pyramidal cells, by double labeling with glial fibrillary acidic protein. We also show that although Dscr1 is present in trisomy in the Ts65Dn mouse, the adult brain expression pattern is not significantly altered. This expression pattern indicated that Dscr1 is a developmentally regulated gene involved in neurogenesis and cardiogenesis and suggests that it may contribute to the alterations observed in these organ systems in DS patients.


Human Molecular Genetics | 2012

Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory

Katherine R. Martin; Alicia Robyn Irene Corlett; Daphne Dubach; Tomris Mustafa; Harold A. Coleman; Helena C. Parkington; Tobias D. Merson; James A. Bourne; Sílvia Porta; Maria L. Arbonés; David Finkelstein; Melanie Pritchard

People with Down syndrome (DS) exhibit abnormal brain structure. Alterations affecting neurotransmission and signalling pathways that govern brain function are also evident. A large number of genes are simultaneously expressed at abnormal levels in DS; therefore, it is a challenge to determine which gene(s) contribute to specific abnormalities, and then identify the key molecular pathways involved. We generated RCAN1-TG mice to study the consequences of RCAN1 over-expression and investigate the contribution of RCAN1 to the brain phenotype of DS. RCAN1-TG mice exhibit structural brain abnormalities in those areas affected in DS. The volume and number of neurons within the hippocampus is reduced and this correlates with a defect in adult neurogenesis. The density of dendritic spines on RCAN1-TG hippocampal pyramidal neurons is also reduced. Deficits in hippocampal-dependent learning and short- and long-term memory are accompanied by a failure to maintain long-term potentiation (LTP) in hippocampal slices. In response to LTP induction, we observed diminished calcium transients and decreased phosphorylation of CaMKII and ERK1/2-proteins that are essential for the maintenance of LTP and formation of memory. Our data strongly suggest that RCAN1 plays an important role in normal brain development and function and its up-regulation likely contributes to the neural deficits associated with DS.


PLOS Genetics | 2016

A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes

Heshan Peiris; Michael D. Duffield; João Fadista; Claire F. Jessup; Vinder Kashmir; Amanda J Genders; Sean L. McGee; Alyce M. Martin; Madiha Saiedi; Nicholas M. Morton; Roderick N. Carter; Michael A. Cousin; Alexandros C. Kokotos; Nikolay Oskolkov; Petr Volkov; Tertius Hough; Elizabeth M. C. Fisher; Victor L. J. Tybulewicz; Jorge Busciglio; Pinar E. Coskun; Ann Becker; Pavel V. Belichenko; William C. Mobley; Michael T. Ryan; Jeng Yie Chan; D. Ross Laybutt; P. Toby Coates; Sijun Yang; Charlotte Ling; Leif Groop

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D.


Cell Research | 2008

Regulation of epithelium-specific Ets-like factors ESE-1 and ESE-3 in airway epithelial cells: potential roles in airway inflammation.

Jing Wu; Rongqi Duan; Huibi Cao; Deborah Field; Catherine Newnham; David R. Koehler; Noe Zamel; Melanie Pritchard; Paul J. Hertzog; Martin Post; A. Keith Tanswell; Jim Hu

Airway inflammation is the hallmark of many respiratory disorders, such as asthma and cystic fibrosis. Changes in airway gene expression triggered by inflammation play a key role in the pathogenesis of these diseases. Genetic linkage studies suggest that ESE-2 and ESE-3, which encode epithelium-specific Ets-domain-containing transcription factors, are candidate asthma susceptibility genes. We report here that the expression of another member of the Ets family transcription factors ESE-1, as well as ESE-3, is upregulated by the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in bronchial epithelial cell lines. Treatment of these cells with IL-1β and TNF-α resulted in a dramatic increase in mRNA expression for both ESE-1 and ESE-3. We demonstrate that the induced expression is mediated by activation of the transcription factor NF-κB. We have characterized the ESE-1 and ESE-3 promoters and have identified the NF-κB binding sequences that are required for the cytokine-induced expression. In addition, we also demonstrate that ESE-1 upregulates ESE-3 expression and downregulates its own induction by cytokines. Finally, we have shown that in Elf3 (homologous to human ESE-1) knockout mice, the expression of the inflammatory cytokine interleukin-6 (IL-6) is downregulated. Our findings suggest that ESE-1 and ESE-3 play an important role in airway inflammation.


Journal of Neural Transmission-supplement | 2003

An altered antioxidant balance occurs in Down syndrome fetal organs: Implications for the “gene dosage effect” hypothesis

Jb de Haan; B. Susil; Melanie Pritchard; Ismail Kola

Down syndrome (DS) is the congenital birth defect responsible for the greatest number of individuals with mental retardation. It arises due to trisomy of human chromosome 21 (HSA21) or part thereof. To date there have been limited studies of HSA21 gene expression in trisomy 21 conceptuses. In this study we investigate the expression of the HSA21 antioxidant gene, Cu/Zn-superoxide dismutase-1 (SOD1) in various organs of control and DS aborted conceptuses. We show that SOD1 mRNA levels are elevated in DS brain, lung, heart and thymus. DS livers show decreased SOD1 mRNA expression compared with controls. Since non-HSA21 antioxidant genes are reported to be concomitantly upregulated in certain DS tissues, we examined the expression of glutathione peroxidase-1 (GPX1) in control and DS fetal organs. Interestingly, GPX1 expression was unchanged in the majority of DS organs and decreased in DS livers. We examined the SOD1 to GPX1 mRNA ratio in individual organs, as both enzymes form part of the bodys defense against oxidative stress, and because a disproportionate increase of SOD1 to GPX1 results in noxious hydroxyl radical damage. All organs investigated show an approximately 2-fold increase in the SOD1 to GPX1 mRNA ratio. We propose that it is the altered antioxidant ratio that contributes to certain aspects of the DS phenotype.


PLOS ONE | 2010

Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

Chelsee A. Hewitt; King Hwa Ling; Tobias D. Merson; Ken M. Simpson; Matthew E. Ritchie; Sarah L. King; Melanie Pritchard; Gordon K. Smyth; Tim Thomas; Hamish S. Scott; Anne K. Voss

Background Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimers disease. Methodology/Principal Findings To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.

Collaboration


Dive into the Melanie Pritchard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Hertzog

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamish S. Scott

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chelsee A. Hewitt

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge