Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Störmer is active.

Publication


Featured researches published by Melanie Störmer.


Journal of Clinical Microbiology | 2005

Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays

Jens Dreier; Melanie Störmer; Knut Kleesiek

ABSTRACT Diagnostic systems based on reverse transcription (RT)-PCR are widely used for the detection of viral genomes in different human specimens. The application of internal controls (IC) to monitor each step of nucleic acid amplification is necessary to prevent false-negative results due to inhibition or human error. In this study, we designed various real-time RT-PCRs utilizing the coliphage MS2 replicase gene, which differ in detection format, amplicon size, and efficiency of amplification. These noncompetitive IC assays, using TaqMan, hybridization probe, or duplex scorpion probe techniques, were tested on the LightCycler and Rotorgene systems. In our approach, clinical specimens were spiked with the control virus to monitor the efficiency of extraction, reverse transcription, and amplification steps. The MS2 RT-PCR assays were applied for internal control when using a second target hepatitis C virus RNA in duplex PCR in blood donor screening. The 95% detection limit was calculated by probit analysis to 44.9 copies per PCR (range, 38.4 to 73.4). As demonstrated routinely, application of MS2 IC assays exhibits low variability and can be applied in various RT-PCR assays. MS2 phage lysates were obtained under standard laboratory conditions. The quantification of phage and template RNA was performed by plating assays to determine PFU or via real-time RT-PCR. High stability of the MS2 phage preparations stored at −20°C, 4°C, and room temperature was demonstrated.


Journal of Clinical Microbiology | 2008

Evaluation of Novel Broad-Range Real-Time PCR Assay for Rapid Detection of Human Pathogenic Fungi in Various Clinical Specimens

Tanja Vollmer; Melanie Störmer; Knut Kleesiek; Jens Dreier

ABSTRACT In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens.


Journal of Clinical Microbiology | 2004

Two novel real-time reverse transcriptase PCR assays for rapid detection of bacterial contamination in platelet concentrates

Jens Dreier; Melanie Störmer; Knut Kleesiek

ABSTRACT The incidence of platelet bacterial contamination is approximately 1 per 2,000 units and has been acknowledged as the most frequent infectious risk from transfusion. In preliminary studies, the sterility of platelet concentrates (PCs) was tested with an automated bacterial blood culturing system and molecular genetic assays. Two real-time reverse transcriptase PCR (RT-PCR) assays performed in a LightCycler instrument were developed and compared regarding specificity and sensitivity by the use of different templates to detect the majority of the clinically important bacterial species in platelets. Primers and probes specific for the conserved regions of the eubacterial 23S rRNA gene or the groEL gene (encoding the 60-kDa heat shock protein Hsp60) were designed. During the development of the 23S rRNA RT-PCR, problems caused by the contamination of reagents with bacterial DNA were noted. Treatment with 8-methoxypsoralen and UV irradiation reduced the level of contaminating DNA. The sensitivity of the assays was greatly influenced by the enzyme system which was used. With rTth DNA polymerase in a one-enzyme system, we detected 500 CFU of Escherichia coli or Staphylococcus epidermidis/ml. With a two-enzyme system consisting of Moloney murine leukemia virus RT and Taq DNA polymerase, we detected 16 CFU/ml. With groEL mRNA as the target of RT-PCR under optimized conditions, we detected 125 CFU of E. coli/ml, and no problems with false-positive results caused by reagent contamination or a cross-reaction with human nucleic acids were found. Furthermore, the use of mRNA as an indicator of viability was demonstrated. Here we report the application of novel real-time RT-PCR assays for the detection of bacterial contamination of PCs that are appropriate for transfusion services.


Vox Sanguinis | 2008

Propionibacterium acnes lacks the capability to proliferate in platelet concentrates.

Melanie Störmer; Knut Kleesiek; Jens Dreier

Background and Objectives  Propionibacterium acnes is considered to be one of the most frequent contaminants of platelet concentrates (PCs) when anaerobic culture‐based detection methods are used. But Propionibacteria are often detected too late when blood products have already been transfused. Therefore, its transfusion relevance is still demanding clarification because studies of the outcome of patients transfused with P. acnes‐contaminated PCs are still uncommon. In this study, we monitored clinical effects in patients after transfusion of PCs, which were detected too late in sterility testing. Furthermore, we assessed the bacterial proliferation of Propionibacterium species seeded into PCs to clarify their significance for platelet bacteria screening.


Journal of Clinical Microbiology | 2006

Enhanced Reverse Transcription-PCR Assay for Detection of Norovirus Genogroup I

Jens Dreier; Melanie Störmer; Dietrich Mäde; Sabine Burkhardt; Knut Kleesiek

ABSTRACT We have developed a one-tube reverse transcription (RT)-PCR method using the real-time TaqMan PCR system for the detection of norovirus genogroup I (NV GGI). By introduction of a novel probe based on locked nucleic acid technology, we enhanced the sensitivity of the assay compared to those of conventional TaqMan probes. The sensitivity of the NV GGI RT-PCR was determined by probit analysis with defined RNA standards and quantified norovirus isolates to 711 copies/ml (95% detection limit). In order to detect PCR inhibition, we included a heterologous internal control (IC) system based on phage MS2. This internally controlled RT-PCR was tested on different real-time PCR platforms, LightCycler, Rotorgene, Mastercycler EP realplex, and ABI Prism. Compared to the assay without an IC, the duplex RT-PCR exhibited no reduction in sensitivity in clinical samples. In combination with an established NV GGII real-time RT-PCR, we used the novel assay in a routine assay for diagnosis of clinical and food-borne norovirus infection. We applied this novel assay to analyze outbreaks of nonbacterial acute gastroenteritis. Norovirus of GGI was detected in these outbreaks. Sequence and similarity plot analysis of open reading frame 1 (ORF1) and ORF2 showed two genotypes, GGI/2 and GGI/4, in semiclosed communities.


International Journal of Medical Microbiology | 2009

Broad-range real-time PCR assay for the rapid identification of cell-line contaminants and clinically important mollicute species.

Melanie Störmer; Tanja Vollmer; Birgit Henrich; Knut Kleesiek; Jens Dreier

Polymerase chain reaction assays have become widely used methods of confirming the presence of Mollicutes species in clinical samples and cell cultures. We have developed a broad-range real-time PCR assay using the locked nucleic acid technology to detect mollicute species causing human infection and cell line contamination. Primers and probes specifically for the conserved regions of the mycoplasmal tuf gene (encoding elongation factor Tu) were designed. Cell culture supernatants, clinical specimens (vaginal swabs, sputum, cryopreserved heart valve tissues), and reference strains were tested for mollicute contamination as well as to exclude cross-reaction to human nucleic acids and other bacterial species. Nucleic acids were extracted using magnetic separation technology. The coamplification of the human beta2-microglobulin DNA served as an internal control. The PCR assay was highly specific and obtained an analytical sensitivity of one copy per microl sample. The 95% detection limit was calculated to 10 copies per microl sample for Mycoplasma pneumoniae and M. orale. No false-positive results were observed due to cross-reaction of walled bacterial, fungal, and human nucleic acids. To evaluate the PCR, we compared the results to two commercialized test systems. Moreover, in combination with a previously developed broad-range RT-PCR assay for the detection of bacteria in blood products, both mollicute and walled bacterial contamination can be detected simultaneously using multiplex real-time RT-PCR.


Transfusion Medicine and Hemotherapy | 2014

Diagnostic Methods for Platelet Bacteria Screening: Current Status and Developments

Melanie Störmer; Tanja Vollmer

Bacterial contamination of blood components and the prevention of transfusion-associated bacterial infection still remains a major challenge in transfusion medicine. Over the past few decades, a significant reduction in the transmission of viral infections has been achieved due to the introduction of mandatory virus screening. Platelet concentrates (PCs) represent one of the highest risks for bacterial infection. This is due to the required storage conditions for PCs in gas-permeable containers at room temperature with constant agitation, which support bacterial proliferation from low contamination levels to high titers. In contrast to virus screening, since 1997 in Germany bacterial testing of PCs is only performed as a routine quality control or, since 2008, to prolong the shelf life to 5 days. In general, bacterial screening of PCs by cultivation methods is implemented by the various blood services. Although these culturing systems will remain the gold standard, the significance of rapid methods for screening for bacterial contamination has increased over the last few years. These new methods provide powerful tools for increasing the bacterial safety of blood components. This article summarizes the course of policies and provisions introduced to increase bacterial safety of blood components in Germany. Furthermore, we give an overview of the different diagnostic methods for bacterial screening of PCs and their current applicability in routine screening processes.


Vox Sanguinis | 2008

Sterility screening of platelet concentrates : questioning the optimal test strategy

Jens Dreier; Melanie Störmer; L. Pichl; V. Schottstedt; A. Grolle; J. Bux; Knut Kleesiek

Background  Routine bacterial monitoring of apheresis platelet concentrates (APC) and pooled platelet concentrates (PPC) was introduced in two German blood services using culture and real‐time reverse transcriptase (RT)‐polymerase chain reaction (PCR). The results of testing are reviewed and used to discuss different strategies for detection of bacterial contamination of PCs.


Transfusion | 2015

Comparison of three noninvasive methods for hemoglobin screening of blood donors

Sergey Ardin; Melanie Störmer; Stela M. Radojska; Larissa Oustianskaia; Moritz Hahn; Birgit S. Gathof

To prevent phlebotomy of anemic individuals and to ensure hemoglobin (Hb) content of the blood units, Hb screening of blood donors before donation is essential. Hb values are mostly evaluated by measurement of capillary blood obtained from fingerstick. Rapid noninvasive methods have recently become available and may be preferred by donors and staff. The aim of this study was to evaluate for the first time all different noninvasive methods for Hb screening.


Transfusion | 2008

pH value promotes growth of Staphylococcus epidermidis in platelet concentrates

Melanie Störmer; Knut Kleesiek; Jens Dreier

BACKGROUND: The platelet (PLT) storage lesion is characterized metabolically by a pH value associated with lactic acid generation. PLT storage conditions support the growth of Staphylococcus epidermidis, the most common organism implicated in bacterial contamination of PLT concentrates (PCs). Here, different factors that influence bacterial growth in PCs are discussed and the relation between pH values of PCs and citrate plasma (CP) is studied, with emphasis on bacterial proliferation.

Collaboration


Dive into the Melanie Störmer's collaboration.

Top Co-Authors

Avatar

Jens Dreier

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Henrich

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Juhl

Paul Ehrlich Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge