Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda M. Mulvihill is active.

Publication


Featured researches published by Melinda M. Mulvihill.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity

Daniel I. Benjamin; Alyssa Cozzo; Xiaodan Ji; Lindsay S. Roberts; Sharon M. Louie; Melinda M. Mulvihill; Kunxin Luo; Daniel K. Nomura

Significance Ether lipid levels are higher in tumors, but their specific function in cancer has remained unclear. We show here that the metabolic enzyme alkylglyceronephosphate synthase (AGPS), a critical step in the synthesis of ether lipids, is up-regulated across multiple types of aggressive human cancer cells and primary tumors. Inactivation of AGPS leads to significant impairments in cancer pathogenicity through not only lowering the levels of cellular ether lipids, but also by altering fatty acid, eicosanoid, and glycerophospholipid metabolism, resulting in an overall reduction in the levels of several oncogenic signaling lipids. Aberrant lipid metabolism is an established hallmark of cancer cells. In particular, ether lipid levels have been shown to be elevated in tumors, but their specific function in cancer remains elusive. We show here that the metabolic enzyme alkylglyceronephosphate synthase (AGPS), a critical step in the synthesis of ether lipids, is up-regulated across multiple types of aggressive human cancer cells and primary tumors. We demonstrate that ablation of AGPS in cancer cells results in reduced cell survival, cancer aggressiveness, and tumor growth through altering the balance of ether lipid, fatty acid, eicosanoid, and fatty acid–derived glycerophospholipid metabolism, resulting in an overall reduction in the levels of several oncogenic signaling lipids. Taken together, our results reveal that AGPS, in addition to maintaining ether lipids, also controls cellular utilization of fatty acids, favoring the generation of signaling lipids necessary for promoting the aggressive features of cancer.


Life Sciences | 2013

Therapeutic potential of monoacylglycerol lipase inhibitors

Melinda M. Mulvihill; Daniel K. Nomura

Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases.


Gastroenterology | 2013

Monoacylglycerol Lipase Controls Endocannabinoid and Eicosanoid Signaling and Hepatic Injury in Mice

Zongxian Cao; Melinda M. Mulvihill; Partha Mukhopadhyay; Huan Xu; Katalin Erdélyi; Enkui Hao; Eileen Holovac; György Haskó; Benjamin F. Cravatt; Daniel K. Nomura; Pál Pacher

BACKGROUND & AIMS The endocannabinoid and eicosanoid lipid signaling pathways have important roles in inflammatory syndromes. Monoacylglycerol lipase (MAGL) links these pathways, hydrolyzing the endocannabinoid 2-arachidonoylglycerol to generate the arachidonic acid precursor pool for prostaglandin production. We investigated whether blocking MAGL protects against inflammation and damage from hepatic ischemia/reperfusion (I/R) and other insults. METHODS We analyzed the effects of hepatic I/R in mice given the selective MAGL inhibitor JZL184, in Mgll(-/-) mice, fatty acid amide hydrolase(-/-) mice, and in cannabinoid receptor type 1(-/-) (CB1-/-) and cannabinoid receptor type 2(-/-) (CB2-/-). Liver tissues were collected and analyzed, along with cultured hepatocytes and Kupffer cells. We measured endocannabinoids, eicosanoids, and markers of inflammation, oxidative stress, and cell death using molecular biology, biochemistry, and mass spectrometry analyses. RESULTS Wild-type mice given JZL184 and Mgll(-/-) mice were protected from hepatic I/R injury by a mechanism that involved increased endocannabinoid signaling via CB2 and reduced production of eicosanoids in the liver. JZL184 suppressed the inflammation and oxidative stress that mediate hepatic I/R injury. Hepatocytes were the major source of hepatic MAGL activity and endocannabinoid and eicosanoid production. JZL184 also protected from induction of liver injury by D-(+)-galactosamine and lipopolysaccharides or CCl4. CONCLUSIONS MAGL modulates hepatic injury via endocannabinoid and eicosanoid signaling; blockade of this pathway protects mice from liver injury. MAGL inhibitors might be developed to treat conditions that expose the liver to oxidative stress and inflammatory damage.


Biochimica et Biophysica Acta | 2013

Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids.

Sharon M. Louie; Lindsay S. Roberts; Melinda M. Mulvihill; Kunxin Luo; Daniel K. Nomura

De novo lipogenesis is considered the primary source of fatty acids for lipid synthesis in cancer cells, even in the presence of exogenous fatty acids. Here, we have used an isotopic fatty acid labeling strategy coupled with metabolomic profiling platforms to comprehensively map palmitic acid incorporation into complex lipids in cancer cells. We show that cancer cells and tumors robustly incorporate and remodel exogenous palmitate into structural and oncogenic glycerophospholipids, sphingolipids, and ether lipids. We also find that fatty acid incorporation into oxidative pathways is reduced in aggressive human cancer cells, and instead shunted into pathways for generating structural and signaling lipids. Our results demonstrate that cancer cells do not solely rely on de novo lipogenesis, but also utilize exogenous fatty acids for generating lipids required for proliferation and protumorigenic lipid signaling. This article is part of a special issue entitled Lipid Metabolism in Cancer.


Science Signaling | 2015

Ski regulates Hippo and TAZ signaling to suppress breast cancer progression

Juliet Rashidian; Erwan Le Scolan; Xiaodan Ji; Qingwei Zhu; Melinda M. Mulvihill; Daniel K. Nomura; Kunxin Luo

Ski inhibits the transcriptional coactivator TAZ through Hippo pathway–dependent and Hippo pathway–independent mechanisms. Keeping cancers from becoming Hippo sized Activation of the kinases in the Hippo pathway triggers the phosphorylation, cystolic sequestration, and degradation of the transcriptional coactivator TAZ, preventing the activation of genes that promote cell proliferation and survival. Ski has both pro-oncogenic and anti-oncogenic properties. By investigating the tumor suppressor side of Ski, Rashidian et al. found that Ski inhibited TAZ in breast cancer cells. In the cytosol, Ski enhanced the phosphorylation of TAZ through the Hippo pathway; in the nucleus, Ski recruited a transcriptional co-repressor to TAZ. Thus, Ski may limit breast cancer progression by inhibiting TAZ through Hippo pathway–dependent and Hippo pathway–independent mechanisms. Ski, the transforming protein of the avian Sloan-Kettering retrovirus, inhibits transforming growth factor–β (TGF-β)/Smad signaling and displays both pro-oncogenic and anti-oncogenic activities in human cancer. Inhibition of TGF-β signaling is likely responsible for the pro-oncogenic activity of Ski. We investigated the mechanism(s) underlying the tumor suppressor activity of Ski and found that Ski suppressed the activity of the Hippo signaling effectors TAZ and YAP to inhibit breast cancer progression. TAZ and YAP are transcriptional coactivators that can contribute to cancer by promoting proliferation, tumorigenesis, and cancer stem cell expansion. Hippo signaling activates the the Lats family of kinases, which phosphorylate TAZ and YAP, resulting in cytoplasmic retention and degradation and inhibition of their transcriptional activity. We showed that Ski interacted with multiple components of the Hippo pathway to facilitate activation of Lats2, resulting in increased phosphorylation and subsequent degradation of TAZ. Ski also promoted the degradation of a constitutively active TAZ mutant that is not phosphorylated by Lats, suggesting the existence of a Lats2-independent degradation pathway. Finally, we showed that Ski repressed the transcriptional activity of TAZ by binding to the TAZ partner TEAD and recruiting the transcriptional co-repressor NCoR1 to the TEAD-TAZ complex. Ski effectively reversed transformation and epithelial-to-mesenchyme transition in cultured breast cancer cells and metastasis in TAZ-expressing xenografted tumors. Thus, Ski inhibited the function of TAZ through multiple mechanisms in human cancer cells.


Chemistry & Biology | 2014

Metabolic Profiling Reveals PAFAH1B3 as a Critical Driver of Breast Cancer Pathogenicity

Melinda M. Mulvihill; Daniel I. Benjamin; Xiaodan Ji; Erwan Le Scolan; Sharon M. Louie; Alice Shieh; McKenna Green; Tara Narasimhalu; Patrick J. Morris; Kunxin Luo; Daniel K. Nomura

Many studies have identified metabolic pathways that underlie cellular transformation, but the metabolic drivers of cancer progression remain less well understood. The Hippo transducer pathway has been shown to confer malignant traits on breast cancer cells. In this study, we used metabolic mapping platforms to identify biochemical drivers of cellular transformation and malignant progression driven through RAS and the Hippo pathway in breast cancer and identified platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) as a key metabolic driver of breast cancer pathogenicity that is upregulated in primary human breast tumors and correlated with poor prognosis. Metabolomic profiling suggests that PAFAH1B3 inactivation attenuates cancer pathogenicity through enhancing tumor-suppressing signaling lipids. Our studies provide a map of altered metabolism that underlies breast cancer progression and put forth PAFAH1B3 as a critical metabolic node in breast cancer.


ACS Chemical Biology | 2015

Selective Inhibitor of Platelet-Activating Factor Acetylhydrolases 1b2 and 1b3 That Impairs Cancer Cell Survival

Jae Won Chang; Andrea M. Zuhl; Anna E Speers; Sherry Niessen; Steven J. Brown; Melinda M. Mulvihill; Yi Chiao Fan; Timothy P. Spicer; Mark R. Southern; Louis Scampavia; Virneliz Fernandez-Vega; Melissa M. Dix; Michael D. Cameron; Peter Hodder; Hugh Rosen; Daniel K. Nomura; Ohyun Kwon; Ku-Lung Hsu; Benjamin F. Cravatt

Platelet-activating factor acetylhydrolases (PAFAHs) 1b2 and 1b3 are poorly characterized serine hydrolases that form a complex with a noncatalytic protein (1b1) to regulate brain development, spermatogenesis, and cancer pathogenesis. Determining physiological substrates and biochemical functions for the PAFAH1b complex would benefit from selective chemical probes that can perturb its activity in living systems. Here, we report a class of tetrahydropyridine reversible inhibitors of PAFAH1b2/3 discovered using a fluorescence polarization-activity-based protein profiling (fluopol-ABPP) screen of the NIH 300,000+ compound library. The most potent of these agents, P11, exhibited IC50 values of ∼40 and 900 nM for PAFAH1b2 and 1b3, respectively. We confirm selective inhibition of PAFAH1b2/3 in cancer cells by P11 using an ABPP protocol adapted for in situ analysis of reversible inhibitors and show that this compound impairs tumor cell survival, supporting a role for PAFAH1b2/3 in cancer.


ACS Chemical Biology | 2014

Organophosphorus Flame Retardants Inhibit Specific Liver Carboxylesterases and Cause Serum Hypertriglyceridemia

Patrick J. Morris; Daniel Medina-Cleghorn; Ann Heslin; Sarah M. King; Joseph Orr; Melinda M. Mulvihill; Ronald M. Krauss; Daniel K. Nomura

Humans are prevalently exposed to organophosphorus flame retardants (OPFRs) contained in consumer products and electronics, though their toxicological effects and mechanisms remain poorly understood. We show here that OPFRs inhibit specific liver carboxylesterases (Ces) and cause altered hepatic lipid metabolism. Ablation of the OPFR target Ces1g has been previously linked to dyslipidemia in mice. Consistent with OPFR inhibition of Ces1g, we also observe OPFR-induced serum hypertriglyceridemia in mice. Our findings suggest novel toxicities that may arise from OPFR exposure and highlight the utility of chemoproteomic and metabolomic platforms in the toxicological characterization of environmental chemicals.


ACS Chemical Biology | 2014

Multidimensional Profiling Platforms Reveal Metabolic Dysregulation Caused by Organophosphorus Pesticides

Daniel Medina-Cleghorn; Ann Heslin; Patrick J. Morris; Melinda M. Mulvihill; Daniel K. Nomura

We are environmentally exposed to countless synthetic chemicals on a daily basis, with an increasing number of these chemical exposures linked to adverse health effects. However, our understanding of the (patho)physiological effects of these chemicals remains poorly understood, due in part to a general lack of effort to systematically and comprehensively identify the direct interactions of environmental chemicals with biological macromolecules in mammalian systems in vivo. Here, we have used functional chemoproteomic and metabolomic platforms to broadly identify direct enzyme targets that are inhibited by widely used organophosphorus (OP) pesticides in vivo in mice and to determine metabolic alterations that are caused by these chemicals. We find that these pesticides directly inhibit over 20 serine hydrolases in vivo leading to widespread disruptions in lipid metabolism. Through identifying direct biological targets of OP pesticides, we show heretofore unrecognized modes of toxicity that may be associated with these agents and underscore the utility of using multidimensional profiling approaches to obtain a more complete understanding of toxicities associated with environmental chemicals.


ACS Chemical Biology | 2014

Inositol Phosphate Recycling Regulates Glycolytic and Lipid Metabolism That Drives Cancer Aggressiveness

Daniel I. Benjamin; Sharon M. Louie; Melinda M. Mulvihill; Rebecca A. Kohnz; Daniel S. Li; Lauryn G. Chan; Antonio Sorrentino; Sourav Bandyopadhyay; Alyssa Cozzo; Anayo Ohiri; Andrei Goga; Shu-Wing Ng; Daniel K. Nomura

Cancer cells possess fundamentally altered metabolism that supports their pathogenic features, which includes a heightened reliance on aerobic glycolysis to provide precursors for synthesis of biomass. We show here that inositol polyphosphate phosphatase 1 (INPP1) is highly expressed in aggressive human cancer cells and primary high-grade human tumors. Inactivation of INPP1 leads to a reduction in glycolytic intermediates that feed into the synthesis of the oncogenic signaling lipid lysophosphatidic acid (LPA), which in turn impairs LPA signaling and further attenuates glycolytic metabolism in a feed-forward mechanism to impair cancer cell motility, invasiveness, and tumorigenicity. Taken together these findings reveal a novel mode of glycolytic control in cancer cells that can serve to promote key oncogenic lipid signaling pathways that drive cancer pathogenicity.

Collaboration


Dive into the Melinda M. Mulvihill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kunxin Luo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaodan Ji

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrei Goga

University of California

View shared research outputs
Top Co-Authors

Avatar

Ann Heslin

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge