Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda R. Dwinell is active.

Publication


Featured researches published by Melinda R. Dwinell.


Nucleic Acids Research | 2015

The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease

Mary Shimoyama; Jeff De Pons; G. Thomas Hayman; Stanley J. F. Laulederkind; Weisong Liu; Rajni Nigam; Victoria Petri; Jennifer R. Smith; Marek Tutaj; Shur-Jen Wang; Elizabeth A. Worthey; Melinda R. Dwinell; Howard J. Jacob

The Rat Genome Database (RGD, http://rgd.mcw.edu) provides the most comprehensive data repository and informatics platform related to the laboratory rat, one of the most important model organisms for disease studies. RGD maintains and updates datasets for genomic elements such as genes, transcripts and increasingly in recent years, sequence variations, as well as map positions for multiple assemblies and sequence information. Functional annotations for genomic elements are curated from published literature, submitted by researchers and integrated from other public resources. Complementing the genomic data catalogs are those associated with phenotypes and disease, including strains, QTL and experimental phenotype measurements across hundreds of strains. Data are submitted by researchers, acquired through bulk data pipelines or curated from published literature. Innovative software tools provide users with an integrated platform to query, mine, display and analyze valuable genomic and phenomic datasets for discovery and enhancement of their own research. This update highlights recent developments that reflect an increasing focus on: (i) genomic variation, (ii) phenotypes and diseases, (iii) data related to the environment and experimental conditions and (iv) datasets and software tools that allow the user to explore and analyze the interactions among these and their impact on disease.


Trends in Genetics | 2010

Gene targeting in the rat: advances and opportunities

Howard J. Jacob; Jozef Lazar; Melinda R. Dwinell; Carol Moreno; Aron M. Geurts

The rat has long been a model favored by physiologists, pharmacologists and neuroscientists. However, over the past two decades, many investigators in these fields have turned to the mouse because of its gene modification technologies and extensive genomic resources. Although the genomic resources of the rat have nearly caught up, gene targeting has lagged far behind, limiting the value of the rat for many investigators. In the past two years, advances in transposon- and zinc finger nuclease (ZFN)-mediated gene knockout as well as the establishment and culturing of embryonic and inducible pluripotent stem cells have created new opportunities for rat genetic research. Here, we provide a high-level description and the potential uses of these new technologies for investigators using the rat for biomedical research.


American Journal of Physiology-renal Physiology | 2008

Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease

David L. Mattson; Melinda R. Dwinell; Andrew S. Greene; Anne E. Kwitek; Richard J. Roman; Howard J. Jacob; Allen W. Cowley

This study examined the genetic basis of hypertension and renal disease in Dahl SS/Mcwi (Dahl Salt-Sensitive) rats using a complete chromosome substitution panel of consomic rats in which each of the 20 autosomes and the X and Y chromosomes were individually transferred from the Brown Norway (BN) rat onto the Dahl SS/Mcwi genetic background. Male and female rats of each of the two parental and 22 consomic strains (10-12 rats/group) were fed a high-salt (8.0% NaCl) diet for 3 wk. Mean arterial blood pressure rose by 60 mmHg and urinary protein and albumin excretion increased 3- and 20-fold, respectively, in male SS/Mcwi rats compared with BN controls. Substitution of chromosomes 1, 5, 7, 8, 13, or 18 from the BN onto the SS/Mcwi background attenuated the development of hypertension, proteinuria, and albuminuria in male rats. In female rats, substitution of chromosomes 1 and 5 also decreased blood pressure, protein excretion, and albumin excretion. These studies also identified several chromosomes in male (6, 11, Y) and female (4, 6, 11, 19, 20) rats that reduced albuminuria without altering blood pressure. These data indicate that genes contributing to salt-sensitive hypertension are found on multiple chromosomes of the Dahl SS/Mcwi rat. Furthermore, this consomic rat panel provides a stable genetic platform that can facilitate further gene mapping by either linkage studies or the breeding of congenic and subcongenic rats.


Nucleic Acids Research | 2009

The Rat Genome Database 2009: variation, ontologies and pathways

Melinda R. Dwinell; Elizabeth A. Worthey; Mary Shimoyama; Burcu Bakir-Gungor; Jeffrey DePons; Stanley J. F. Laulederkind; T. F. Lowry; Rajni Nigram; Victoria Petri; Jennifer R. Smith; Alexander Stoddard; Simon N. Twigger; Howard J. Jacob

The Rat Genome Database (RGD, http://rgd.mcw.edu) was developed to provide a core resource for rat researchers combining genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through to the level of the whole organism, including the variations associated with disease phenotypes. To fully support use of the rat as a translational model for biological systems and human disease, RGD continues to curate these datasets while enhancing and developing tools to allow efficient and effective access to the data in a variety of formats including linear genome viewers, pathway diagrams and biological ontologies. To support pathophysiological analysis of data, RGD Disease Portals provide an entryway to integrated gene, QTL and strain data specific to a particular disease. In addition to tool and content development and maintenance, RGD promotes rat research and provides user education by creating and disseminating tutorials on the curated datasets, submission processes, and tools available at RGD. By curating, storing, integrating, visualizing and promoting rat data, RGD ensures that the investment made into rat genomics and genetics can be leveraged by all interested investigators.


Respiration Physiology | 2000

Central nervous system mechanisms of ventilatory acclimatization to hypoxia

Frank L. Powell; K.A Huey; Melinda R. Dwinell

Ventilatory acclimatization to hypoxia is the time-dependent increase in ventilation that occurs with chronic exposure to hypoxia. Despite decades of research, the physiological mechanisms that increase the hypoxic ventilatory response during chronic hypoxia are not well understood. This review focuses on adaptations within the central nervous system (CNS) that increase the hypoxic ventilatory response. Although an increase in CNS responsiveness had been proposed many years ago, only recently has strong experimental evidence been provided for an increase in the CNS gain in the rat, which has proved to be a good model of VAH in humans. Within the CNS, several neuroanatomical sites could be involved as well as changes in various neurotransmitters, neuromodulators or signalling mechanisms within any of those sites. Lastly, adaptations within the CNS could involve both direct effects of decreased P(O(2)) and indirect effects of increased afferent nerve activity due to chronic stimulation of the peripheral arterial chemoreceptors.


Briefings in Bioinformatics | 2013

The Rat Genome Database 2013—data, tools and users

Stanley J. F. Laulederkind; G. Thomas Hayman; Shur-Jen Wang; Jennifer R. Smith; T. F. Lowry; Rajni Nigam; Victoria Petri; Jeff De Pons; Melinda R. Dwinell; Mary Shimoyama; Diane H. Munzenmaier; Elizabeth A. Worthey; Howard J. Jacob

The Rat Genome Database (RGD) was started >10 years ago to provide a core genomic resource for rat researchers. Currently, RGD combines genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through the organismal level. Those users access RGD from all over the world. End users are not only rat researchers but also researchers working with mouse and human data. Translational research is supported by RGD’s comparative genetics/genomics data in disease portals, in GBrowse, in VCMap and on gene report pages. The impact of RGD also goes beyond the traditional biomedical researcher, as the influence of RGD reaches bioinformaticians, tool developers and curators. Import of RGD data into other publicly available databases expands the influence of RGD to a larger set of end users than those who avail themselves of the RGD website. The value of RGD continues to grow as more types of data and more tools are added, while reaching more types of end users.


Genome Research | 2013

Identifying multiple causative genes at a single GWAS locus

Michael J. Flister; Shirng-Wern Tsaih; Caitlin C. O'Meara; Bradley T. Endres; Matthew J. Hoffman; Aron M. Geurts; Melinda R. Dwinell; Jozef Lazar; Howard J. Jacob; Carol Moreno

Genome-wide association studies (GWAS) are useful for nominating candidate genes, but typically are unable to establish disease causality or differentiate between the effects of variants in linkage disequilibrium (LD). Additionally, some GWAS loci might contain multiple causative variants or genes that contribute to the overall disease susceptibility at a single locus. However, the majority of current GWAS lack the statistical power to test whether multiple causative genes underlie the same locus, prompting us to adopt an alternative approach to testing multiple GWAS genes empirically. We used gene targeting in a disease-susceptible rat model of genetic hypertension to test all six genes at the Agtrap-Plod1 locus (Agtrap, Mthfr, Clcn6, Nppa, Nppb, and Plod1) for blood pressure (BP) and renal phenotypes. This revealed that the majority of genes at this locus (five out of six) can impact hypertension by modifying BP and renal phenotypes. Mutations of Nppa, Plod1, and Mthfr increased disease susceptibility, whereas Agtrap and Clcn6 mutations decreased hypertension risk. Reanalysis of the human AGTRAP-PLOD1 locus also implied that disease-associated haplotype blocks with polygenic effects were not only possible, but rather were highly plausible. Combined, these data demonstrate for the first time that multiple modifiers of hypertension can cosegregate at a single GWAS locus.


Respiration Physiology | 2000

Measuring ventilatory acclimatization to hypoxia: comparative aspects.

Frank L. Powell; Melinda R. Dwinell; E.A. Aaron

Acclimatization to hypoxia increases the hypoxic ventilatory response (HVR) in mammals. The literature on humans shows that several protocols can quantify this increase in HVR if isocapnia is maintained, regardless of the exact level of Pa(CO(2)). In rats, the isocapnic HVR also increases with chronic hypoxia and this cannot be explained by a non-specific effect of increased ventilatory drive on the HVR. Changes in arterial pH are predicted to increase the HVR during chronic hypoxia in rats but this has not been quantified. Limitations in determining mechanisms of change in the HVR from reflex experiments are discussed. Chronic hypoxia changes some, but not all, indices of ventilatory motor output that are useful for normalization between experiments on anesthetized rats. Finally, ducks also show time-dependent increases in ventilation during chronic hypoxia and birds provide a good experimental model to study reflex interactions. However, reflexes from intrapulmonary CO(2) chemoreceptors can complicate the measurement of changes in the isocapnic HVR during chronic hypoxia in birds.


Respiration Physiology | 1997

Lack of long-term facilitation of ventilation after exposure to hypoxia in goats.

Melinda R. Dwinell; Patrick L. Janssen; Gerald E. Bisgard

Episodic hypoxia has been shown to induce augmented normoxic ventilatory drive or long-term facilitation (LTF, continued hyperventilation after termination of hypoxic stimulation) in awake dogs and awake goats. The main objective of these experiments was to examine whether continuous isocapnic hypoxia in awake goats elicits LTF and additionally, to determine if goats exhibit hypoxic ventilatory decline (roll-off) during the hypoxic exposure. Goats were exposed to either 4 h of isocapnic hypoxia (n = 10) or 30 min of isocapnic hypoxia (n = 7). Ventilation (VE), tidal volume and frequency were measured before, during and following the end of the isocapnic hypoxia (PaO2 40 Torr) exposure. During the 4 h period of hypoxia, VE increased in a time-dependent manner in a typical pattern of acclimatization, reaching a mean of 40.8 +/- 3.6 L/min at the end of 4 h. Five minutes after return to normoxia, VE was 13.0 +/- 0.8 L/min, not different than control VE (13.1 +/- 0.9 L/min) measured prior to the hypoxic exposure and remained unchanged from this value for another 30 min. During the 30 min hypoxic exposure, VE increased upon exposure to hypoxia, remained significantly elevated throughout the hypoxic exposure, but promptly returned to control levels upon return to normoxia. These results indicate that continuous isocapnic hypoxia elicits neither long term facilitation of ventilation nor hypoxic ventilatory decline in awake goats.


Frontiers in Genetics | 2012

Three ontologies to define phenotype measurement data

Mary Shimoyama; Rajni Nigam; Leslie Sanders McIntosh; Rakesh Nagarajan; Treva Rice; D. C. Rao; Melinda R. Dwinell

Background: There is an increasing need to integrate phenotype measurement data across studies for both human studies and those involving model organisms. Current practices allow researchers to access only those data involved in a single experiment or multiple experiments utilizing the same protocol. Results: Three ontologies were created: Clinical Measurement Ontology, Measurement Method Ontology and Experimental Condition Ontology. These ontologies provided the framework for integration of rat phenotype data from multiple studies into a single resource as well as facilitated data integration from multiple human epidemiological studies into a centralized repository. Conclusion: An ontology based framework for phenotype measurement data affords the ability to successfully integrate vital phenotype data into critical resources, regardless of underlying technological structures allowing the user to easily query and retrieve data from multiple studies.

Collaboration


Dive into the Melinda R. Dwinell's collaboration.

Top Co-Authors

Avatar

Howard J. Jacob

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Mary Shimoyama

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Rajni Nigam

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Victoria Petri

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jennifer R. Smith

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

G. Thomas Hayman

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Shur-Jen Wang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff De Pons

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Marek Tutaj

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge