Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa A. Herman is active.

Publication


Featured researches published by Melissa A. Herman.


Biological Psychiatry | 2011

Neuropeptide Y Opposes Alcohol Effects on Gamma-Aminobutyric Acid Release in Amygdala and Blocks the Transition to Alcohol Dependence

Nicholas W. Gilpin; Kaushik K. Misra; Melissa A. Herman; Maureen T. Cruz; George F. Koob; Marisa Roberto

BACKGROUND During the transition to alcohol and drug addiction, neuromodulator systems in the extended amygdala are recruited to mediate aspects of withdrawal and relapse via convergence on inhibitory gamma-aminobutyric acid (GABA) neurons in central amygdala (CeA). METHODS This study investigated the role of neuropeptide Y (NPY) in excessive alcohol drinking by making rats dependent on alcohol via alcohol vapor inhalation. This study also utilized intracellular and whole-cell recording techniques to determine the effects of NPY on GABAergic inhibitory transmission in CeA, synaptic mechanisms involved in these NPY effects, and NPY interactions with alcohol in the CeA of alcohol-naive and alcohol-dependent rats. RESULTS Chronic NPY treatment blocked excessive operant alcohol-reinforced responding associated with alcohol dependence, as well as gradual increases in alcohol responding by intermittently tested nondependent control animals. Neuropeptide Y decreased baseline GABAergic transmission and reversed alcohol-induced enhancement of inhibitory transmission in CeA by suppressing GABA release via actions at presynaptic Y(2) receptors. CONCLUSIONS These results highlight NPY modulation of GABAergic signaling in central amygdala as a promising pharmacotherapeutic target for the treatment of alcoholism. Gamma-aminobutyric acid neurons in the CeA likely constitute a major point of convergence for neuromodulator systems recruited during the transition to alcohol dependence.


Nature Neuroscience | 2014

VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation

Taryn E. Grieder; Melissa A. Herman; Candice Contet; Laura A. Tan; Hector Vargas-Perez; Ami Cohen; Michal Chwalek; Geith Maal-Bared; John Freiling; Joel E. Schlosburg; Laura Clarke; Elena Crawford; Pascale Koebel; Vez Repunte-Canonigo; Pietro Paolo Sanna; Andrew R. Tapper; Marisa Roberto; Brigitte L. Kieffer; Paul E. Sawchenko; George F. Koob; Derek van der Kooy; Olivier George

SUMMARY Dopaminergic neurons in the ventral tegmental area (VTA) are well known for their role in mediating the positive reinforcing effects of drugs of abuse. Here, we identify in rodents and humans a population of VTA dopamine neurons co-expressing corticotropin releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates CRF mRNA in dopaminergic neurons of the posterior VTA, activates local CRF1 receptors, and blocks nicotine-induced activation of transient GABAergic input to dopaminergic neurons. Local downregulation of CRF mRNA and specific pharmacological blockade of CRF1 receptors in the VTA reversed the effect of nicotine on GABAergic input to dopaminergic neurons, prevented the aversive effects of nicotine withdrawal, and limited the escalation of nicotine intake. These results link the brain reward and stress systems within the same brain region in signaling the negative motivational effects of nicotine withdrawal.Dopaminergic neurons in the ventral tegmental area (VTA) are well known for mediating the positive reinforcing effects of drugs of abuse. Here we identify in rodents and humans a population of VTA dopaminergic neurons expressing corticotropin-releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates Crh mRNA (encoding CRF) in dopaminergic neurons of the posterior VTA, activates local CRF1 receptors and blocks nicotine-induced activation of transient GABAergic input to dopaminergic neurons. Local downregulation of Crh mRNA and specific pharmacological blockade of CRF1 receptors in the VTA reversed the effect of nicotine on GABAergic input to dopaminergic neurons, prevented the aversive effects of nicotine withdrawal and limited the escalation of nicotine intake. These results link the brain reward and stress systems in the same brain region to signaling of the negative motivational effects of nicotine withdrawal.


The Journal of Neuroscience | 2013

Novel Subunit-Specific Tonic GABA Currents and Differential Effects of Ethanol in the Central Amygdala of CRF Receptor-1 Reporter Mice

Melissa A. Herman; Candice Contet; Nicholas J. Justice; Wylie Vale; Marisa Roberto

The central nucleus of the amygdala (CeA) is an important integrative site for the reinforcing effects of drugs of abuse, such as ethanol. Activation of corticotropin-releasing factor type 1 (CRF1) receptors in the CeA plays a critical role in the development of ethanol dependence, but these neurons remain uncharacterized. Using CRF1:GFP reporter mice and a combined electrophysiological/immunohistochemical approach, we found that CRF1 neurons exhibit an α1 GABAA receptor subunit-mediated tonic conductance that is driven by action potential-dependent GABA release. In contrast, unlabeled CeA neurons displayed a δ subunit-mediated tonic conductance that is enhanced by ethanol. Ethanol increased the firing discharge of CRF1 neurons and decreased the firing discharge of unlabeled CeA neurons. Retrograde tracing studies indicate that CeA CRF1 neurons project into the bed nucleus of the stria terminalis. Together, these data demonstrate subunit-specific tonic signaling and provide mechanistic insight into the specific effects of ethanol on CeA microcircuitry.


Biological Psychiatry | 2012

Nociceptin/Orphanin FQ Blockade of Corticotropin-Releasing Factor-Induced Gamma-Aminobutyric Acid Release in Central Amygdala Is Enhanced After Chronic Ethanol Exposure

Maureen T. Cruz; Melissa A. Herman; Marsida Kallupi; Marisa Roberto

BACKGROUND The central nucleus of the amygdala (CeA) mediates stress- and addiction-related processes. Corticotropin-releasing factor (CRF) and nociceptin/orphanin FQ (nociceptin) regulate ethanol intake and anxiety-like behavior. In the rat, CRF and ethanol significantly augment CeA gamma-aminobutyric acid (GABA) release, whereas nociceptin diminishes it. METHODS Using electrophysiologic techniques in an in vitro slice preparation, we investigated the interaction of nociceptin and CRF on evoked and spontaneous GABAergic transmission in CeA slices of naive and ethanol-dependent rats and the mechanistic role of protein kinase A. RESULTS In neurons from naive animals, nociceptin dose-dependently diminished basal-evoked GABA(A) receptor-mediated inhibitory postsynaptic potentials (IPSPs) by decreasing GABA release and prevented, as well as reversed, CRF-induced augmentation of IPSPs, actions that required PKA signaling. In neurons from ethanol-dependent animals, nociceptin decreased basal GABAergic transmission and blocked the CRF-induced increase in GABA release to a greater extent than in naive controls. CONCLUSIONS These data provide new evidence for an interaction between the nociceptin and CRF systems in the CeA. Nociceptin opposes CRF effects on CeA GABAergic transmission with sensitization of this effect in dependent animals. These properties of nociceptin may underlie its anti-alcohol and anxiolytic properties and identify the nociceptin receptor as a useful therapeutic target for alcoholism.


Neuropsychopharmacology | 2013

Ghrelin Increases GABAergic Transmission and Interacts with Ethanol Actions in the Rat Central Nucleus of the Amygdala

Maureen T. Cruz; Melissa A. Herman; Dawn M. Cote; Andrey E. Ryabinin; Marisa Roberto

The neural circuitry that processes natural rewards converges with that engaged by addictive drugs. Because of this common neurocircuitry, drugs of abuse have been able to engage the hedonic mechanisms normally associated with the processing of natural rewards. Ghrelin is an orexigenic peptide that stimulates food intake by activating GHS-R1A receptors in the hypothalamus. However, ghrelin also activates GHS-R1A receptors on extrahypothalamic targets that mediate alcohol reward. The central nucleus of the amygdala (CeA) has a critical role in regulating ethanol consumption and the response to ethanol withdrawal. We previously demonstrated that rat CeA GABAergic transmission is enhanced by acute and chronic ethanol treatment. Here, we used quantitative RT-PCR (qRT-PCR) to detect Ghsr mRNA in the CeA and performed electrophysiological recordings to measure ghrelin effects on GABA transmission in this brain region. Furthermore, we examined whether acute or chronic ethanol treatment would alter these electrophysiological effects. Our qRT-PCR studies show the presence of Ghsr mRNA in the CeA. In naive animals, superfusion of ghrelin increased the amplitude of evoked inhibitory postsynaptic potentials (IPSPs) and the frequency of miniature inhibitory postsynaptic currents (mIPSCs). Coapplication of ethanol further increased the ghrelin-induced enhancement of IPSP amplitude, but to a lesser extent than ethanol alone. When applied alone, ethanol significantly increased IPSP amplitude, but this effect was attenuated by the application of ghrelin. In neurons from chronic ethanol-treated (CET) animals, the magnitude of ghrelin-induced increases in IPSP amplitude was not significantly different from that in naive animals, but the ethanol-induced increase in amplitude was abolished. Superfusion of the GHS-R1A antagonists D-Lys3-GHRP-6 and JMV 3002 decreased evoked IPSP and mIPSC frequency, revealing tonic ghrelin activity in the CeA. D-Lys3-GHRP-6 and JMV 3002 also blocked ghrelin-induced increases in GABAergic responses. Furthermore, D-Lys3-GHRP-6 did not affect ethanol-induced increases in IPSP amplitude. These studies implicate a potential role for the ghrelin system in regulating GABAergic transmission and a complex interaction with ethanol at CeA GABAergic synapses.


Addiction Biology | 2016

Cell‐type‐specific tonic GABA signaling in the rat central amygdala is selectively altered by acute and chronic ethanol

Melissa A. Herman; Marisa Roberto

The central nucleus of the amygdala (CeA) is an important site for the reinforcing effects of ethanol and has been implicated in the development of alcohol dependence. The CeA GABAA receptor system is particularly vulnerable to the effects of acute and chronic ethanol exposure. Previous work in the CeA focused on ethanol and phasic GABAA receptor signaling, but tonic GABAA receptor signaling in the rat CeA remains understudied. In the present study, we found that the CeA contains two types of tonic conductance that are expressed in a cell‐type‐specific manner. Low threshold bursting (LTB) and some regular spiking (RS) neurons have an ongoing tonic conductance that is mediated by the α1‐GABAA receptor subunit and is insensitive to acute ethanol exposure. Late spiking (LS) and a separate population of RS neurons do not display a persistent tonic conductance but have the potential for tonic signaling that is mediated by the δ‐GABAA receptor subunit and can be activated by increasing the ambient GABA concentration or by acute ethanol exposure. Acute ethanol exposure differentially alters the firing discharge of different CeA cell types. Chronic ethanol exposure produces a switch in tonic signaling such that the tonic conductance in LTB and some RS neurons is lost and an ongoing tonic conductance is present in LS and a separate population of RS neurons. Collectively, these data demonstrate cell‐type‐specific tonic signaling in the CeA and provide new insight into how acute and chronic ethanol exposure differentially alter specific aspects of inhibitory circuitry in the CeA.


Proceedings of the National Academy of Sciences of the United States of America | 2015

GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol.

Melissa A. Herman; Harpreet Sidhu; David G. Stouffer; Max Kreifeldt; David Le; Chelsea Cates-Gatto; Michaelanne B. Munoz; Amanda J. Roberts; Loren H. Parsons; Marisa Roberto; Kevin Wickman; Paul A. Slesinger; Candice Contet

Significance G protein-gated inwardly rectifying potassium (GIRK) channels regulate neuronal excitability and can be activated by ethanol. The role of GIRK channels in the behavioral effects of ethanol is poorly understood, however. This study shows that genetic ablation of GIRK3, one of four GIRK subunits, prevents ethanol from activating the mesolimbic dopaminergic pathway, a neuronal circuit subserving the motivation to seek reward (incentive salience), and enhances binge-like drinking. Conversely, increasing GIRK3 expression in the ventral midbrain, where this pathway originates, reduces binge-like drinking. Thus, GIRK3 appears to be a critical gatekeeper of ethanol incentive salience and a potential target for the treatment of excessive ethanol consumption. G protein-gated inwardly rectifying potassium (GIRK) channels are critical regulators of neuronal excitability and can be directly activated by ethanol. Constitutive deletion of the GIRK3 subunit has minimal phenotypic consequences, except in response to drugs of abuse. Here we investigated how the GIRK3 subunit contributes to the cellular and behavioral effects of ethanol, as well as to voluntary ethanol consumption. We found that constitutive deletion of GIRK3 in knockout (KO) mice selectively increased ethanol binge-like drinking, without affecting ethanol metabolism, sensitivity to ethanol intoxication, or continuous-access drinking. Virally mediated expression of GIRK3 in the ventral tegmental area (VTA) reversed the phenotype of GIRK3 KO mice and further decreased the intake of their wild-type counterparts. In addition, GIRK3 KO mice showed a blunted response of the mesolimbic dopaminergic (DA) pathway to ethanol, as assessed by ethanol-induced excitation of VTA neurons and DA release in the nucleus accumbens. These findings support the notion that the subunit composition of VTA GIRK channels is a critical determinant of DA neuron sensitivity to drugs of abuse. Furthermore, our study reveals the behavioral impact of this cellular effect, whereby the level of GIRK3 expression in the VTA tunes ethanol intake under binge-type conditions: the more GIRK3, the less ethanol drinking.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

μ-Opioid receptor stimulation in the medial subnucleus of the tractus solitarius inhibits gastric tone and motility by reducing local GABA activity

Melissa A. Herman; Alisa Alayan; Niaz Sahibzada; Barbara M. Bayer; Joseph G. Verbalis; Kenneth L. Dretchen; Richard A. Gillis

We examined the effects of altering mu-opioid receptor (MOR) activity in the medial subnucleus of the tractus solitarius (mNTS) on several gastric end points including intragastric pressure (IGP), fundus tone, and the receptive relaxation reflex (RRR). Microinjection of the MOR agonist [d-Ala(2),MePhe(4),Gly(ol)(5)]enkephalin (DAMGO; 1-10 fmol) into the mNTS produced dose-dependent decreases in IGP. Microinjection of the endogenous MOR agonists endomorphin-1 and endomorphin-2 (20 fmol) into the mNTS mimicked the effects of 10 fmol DAMGO. Microinjection of 1 and 100 pmol DAMGO into the mNTS produced a triphasic response consisting of an initial decrease, a transient increase, and a persistent decrease in IGP. The increase in IGP appeared to be due to diffusion to the dorsal motor nucleus of the vagus. The effects of 10 fmol DAMGO in the mNTS were blocked by vagotomy and by blockade of MORs, GABA(A) receptors, and ionotropic glutamate receptors in the mNTS. The RRR response was abolished by bilateral microinjection of the opioid receptor antagonist naltrexone into the mNTS and reduced by intravenous administration of naltrexone. Our data demonstrate that 1) activation of MORs in the mNTS with femtomole doses of agonist inhibits gastric motility, 2) the mechanism of MOR effects in the mNTS is through suppression of local GABA activity, and 3) blockade of MORs in the mNTS prevents the RRR response. These data suggest that opioids play an important role in mediating a vagovagal reflex through release of an endogenous opioid in the mNTS, which, in turn, inhibits ongoing local GABA activity and allows vagal sensory input to excite second-order mNTS neurons.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Characterization of noradrenergic transmission at the dorsal motor nucleus of the vagus involved in reflex control of fundus tone

Melissa A. Herman; Mark Niedringhaus; Alisa Alayan; Joseph G. Verbalis; Niaz Sahibzada; Richard A. Gillis

Quantitative analysis of innervation to dorsal motor nucleus of the vagus (DMV) fundus-projecting neurons indicates that approximately 17% of input neurons are noradrenergic. To determine whether this small percentage of neurons innervating DMV output to the stomach is physiologically relevant, we evaluated the role of norepinephrine at the DMV in mediating a vagovagal reflex controlling the fundus. A strain gauge was sutured onto the fundus of isoflurane-anesthetized rats to monitor changes in tone evoked by esophageal distension (ED). ED produced a decrease in fundus tone of 0.31 +/- 0.02 g (P < 0.05), which could be reproduced after a 30-min interval between distensions. Bilateral cervical vagotomy and/or pretreatment with intravenous atropine methylbromide prevented the reflex-induced fundus relaxation. In contrast, intravenous N(G)-nitro-L-arginine methyl ester had no effect. Bilateral microinjection of alpha2-adrenoreceptor antagonists (yohimbine and RS-79948) into the DMV also prevented the response. Before microinjection of alpha2-adrenoreceptor antagonists, ED decreased fundus tone by 0.33 +/- 0.05 g (P < 0.05). After antagonist microinjection, ED decreased fundus tone by only 0.05 +/- 0.06 g (P > 0.05). Bilateral microinjection of prazosin into the DMV had no effect on the response. Microinjection of norepinephrine into the DMV mimicked the effect of ED and was also prevented by prior microinjection of an alpha2-adrenoreceptor antagonist. Our results indicate that noradrenergic innervation of DMV fundus-projecting neurons is physiologically important and suggest that norepinephrine released at the DMV acts on alpha2-adrenoreceptors to inhibit activity in a cholinergic-cholinergic excitatory pathway to the fundus.


Brain Behavior and Immunity | 2015

Role of the IL-1 receptor antagonist in ethanol-induced regulation of GABAergic transmission in the central amygdala

Michal Bajo; Melissa A. Herman; Florence P. Varodayan; Christopher S. Oleata; Samuel G. Madamba; R.A. Harris; Yuri A. Blednov; Marisa Roberto

The IL-1 receptor antagonist (IL-1ra), encoded by the Il1rn gene, is an endogenous antagonist of the IL-1 receptor. Studies of Il1rn knockout (KO) and wild type (WT) mice identified differences in several ethanol-related behaviors, some of which may be mediated by GABAergic transmission in the central nucleus of the amygdala (CeA). In this study we examined phasic (both evoked and spontaneous) and tonic GABAergic transmission in the CeA of Il1rn KO and WT mice and the ethanol sensitivity of these GABAergic synapses. The mean amplitude of baseline evoked GABAA-inhibitory postsynaptic potentials (IPSPs), and the baseline frequency of spontaneous GABAA-inhibitory postsynaptic currents (sIPSCs), but not the frequency of miniature GABAA-IPSCs (mIPSCs), were significantly increased in KO compared to WT mice, indicating enhanced presynaptic action potential-dependent GABA release in the CeA of KO mice. In KO mice, we also found a cell-type specific switch in the ongoing tonic GABAA receptor conductance such that the tonic conductance in low threshold bursting (LTB) neurons is lost and a tonic conductance in late spiking (LS) neurons appears. Notably, the ethanol-induced facilitation of evoked and spontaneous GABA release was lost in most of the CeA neurons from KO compared to WT mice. Ethanol superfusion increased the sIPSC rise and decay times in both KO and WT mice, suggesting ethanol-induced postsynaptic effects. The pretreatment of CeA slices with exogenous IL-1ra (Kineret; 100ng/ml) returned sIPSC frequency in KO mice to the levels found in WT. Importantly, Kineret also restored ethanol-induced potentiation of the sIPSC frequency in the KO mice. These results show that IL-1ra regulates baseline GABAergic transmission in the CeA and is critical for the ethanol effects at these synapses.

Collaboration


Dive into the Melissa A. Herman's collaboration.

Top Co-Authors

Avatar

Marisa Roberto

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Niaz Sahibzada

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gillis

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Candice Contet

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George F. Koob

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Maureen T. Cruz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph G. Verbalis

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge