Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa A. Scott is active.

Publication


Featured researches published by Melissa A. Scott.


Glia | 2009

Mitogen-activated protein kinase-signaling stimulates Müller glia to proliferate in acutely damaged chicken retina

Andy J. Fischer; Melissa A. Scott; William S. Tuten

Müller glia in the mature retina have the capacity to become progenitor‐like cells in a many different vertebrate classes. The cell‐signaling pathways that control the ability of mature Müller glia to become progenitor‐like cells remain uncertain. The purpose of this study was to investigate the roles of the Mitogen‐Activated Protein Kinase (MAPK) pathway in regulating the activity of Müller glia in the chicken retina. In response to acute retinal damage, we found that Müller glia accumulated phosphorylated ERK1/2 and phospho‐CyclicAMP Response Element Binding‐protein (pCREB), and transiently expressed immediate early genes, cFos and Egr1, that are known to be downstream of MAPK‐signaling. Egr1 and pCREB were normally expressed by retinal progenitors in the circumferential marginal zone (CMZ), whereas cFos and pERK1/2 were not. In addition, small molecule inhibitors of MEK (UO126) and the FGF‐receptor (SU5402) suppressed the proliferation of Müller glia‐derived progenitor‐like cells. These inhibitors suppressed the accumulation of Egr1 and pCREB, whereas levels of cFos were unaffected in the glial cells. These findings suggest that Egr1 and pCREB are downstream of the signaling cascade activated by FGF‐receptors and ERK1/2. Further, our findings suggest that Egr1 and pCREB may promote glial proliferation. We propose that activation of both the FGF‐receptor and ERK1/2‐pathway is required for the proliferation and transdifferentiation of Müller glia into progenitor‐like cells.


Glia | 2009

Mitogen-activated protein kinase-signaling regulates the ability of Müller glia to proliferate and protect retinal neurons against excitotoxicity.

Andy J. Fischer; Melissa A. Scott; Eric R. Ritchey; Patrick Sherwood

The purpose of this study was to investigate whether insulin, fibroblast growth factor (FGF), and mitogen‐activated protein kinase (MAPK) pathways protect retinal neurons against excitotoxicity and regulate the proliferation of Müller glia. We found that intraocular injections of insulin or FGF2 had variable effects upon the phosphorylation of ERK1/2, p38 MAPK, and CREB, and the expression of immediate early genes, cFos and Egr1. Accumulations of pERK1/2, p38 MAPK, pCREB, cFos and Egr1 in response to insulin or FGF2 were confined to Müller glia, whereas retinal neurons did not seem to respond to growth factors. Unlike FGF2, insulin stimulated microglia‐like cells to upregulate the intermediate filament transitin and lysosomal membrane glycoprotein (LMG). With microglia‐like cells and Müller glia stimulated by insulin or FGF2 there were profound effects upon numbers of dying neurons in response to excitotoxic damage. Although FGF2 significantly reduced numbers of dying neurons, insulin significantly increased numbers of dying neurons. In addition to neuroprotective affects, FGF2 also “primed” the Müller glia to proliferate following retinal damage, whereas insulin had no effect upon glial proliferation. Further, we found that FGF receptor isoform 1 (FGFR1) and FGFR3 were prominently expressed in the retina, whereas the insulin receptor and FGFR2 are not expressed, or are expressed at very low levels. We conclude that MAPK‐signaling through FGF receptors stimulates Müller glia to become more neuroprotective and progenitor‐like, whereas insulin acting on Müller and microglia‐like cells through unidentified receptors had the opposite effect.


Developmental Biology | 2008

Bullwhip neurons in the retina regulate the size and shape of the eye

Andy J. Fischer; Eric R. Ritchey; Melissa A. Scott; Angela Wynne

Bullwhip and mini-bullwhip cells are unconventional types of retinal neurons that utilize the neuropeptides glucagon, glucagon-like peptide 1 (GLP1) and substance P. These cells have been implicated in regulating the proliferation of neural progenitors in the circumferential marginal zone (CMZ) of the chicken retina. The purpose of this study was to investigate the roles of the bullwhip cells in regulating ocular size and shape. We found that intravitreal delivery of colchicine at postnatal day 7 destroys the vast majority (approximately 98%) of the bullwhip and mini-bullwhip cells and their peptidergic terminals that are concentrated in the CMZ near the equator of the eye. Interestingly, colchicine-treatment resulted in excessive ocular growth that involved the expansion of equatorial diameter, but not axial length. Intraocular injections of glucagon completely prevented the equatorial expansion that occurs with colchicine-treatment. In eyes with undamaged retinas, exogenous glucagon suppressed equatorial eye growth, whereas glucagon receptor antagonists caused excessive equatorial growth. Furthermore, visual stimuli that increase or decrease rates of ocular growth caused a down- or up-regulation, respectively, of the immediate early gene Egr1 in the bullwhip cells; indicating that the activity of the bullwhip cells is regulated by growth-guiding visual cues. We found that the glucagon receptor was expressed by cells in the fibrous and cartilaginous sclera in equatorial regions of the eye. Taken together, these findings suggest that glucagon peptide released from the terminals of the bullwhip and mini-bullwhip cells regulates the growth of the equatorial sclera in a vision-dependent manner. Although the bullwhip and mini-bullwhip cells are not abundant, less than 1000 cells per retina, their influence on the development of the eye is substantial and includes vision-guided ocular growth.


PLOS ONE | 2010

Heterogeneity of glia in the retina and optic nerve of birds and mammals.

Andy J. Fischer; Christopher Zelinka; Melissa A. Scott

We have recently described a novel type of glial cell that is scattered across the inner layers of the avian retina [1]. These cells are stimulated by insulin-like growth factor 1 (IGF1) to proliferate, migrate distally into the retina, and up-regulate the nestin-related intermediate filament transitin. These changes in glial activity correspond with increased susceptibility of neurons to excitotoxic damage. This novel cell-type has been termed the Non-astrocytic Inner Retinal Glia-like (NIRG) cells. The purpose of the study was to investigate whether the retinas of non-avian species contain cells that resemble NIRG cells. We assayed for NIRG cells by probing for the expression of Sox2, Sox9, Nkx2.2, vimentin and nestin. NIRG cells were distinguished from astrocytes by a lack of expression for Glial Fibrilliary Acidic Protein (GFAP). We examined the retinas of adult mice, guinea pigs, dogs and monkeys (Macaca fasicularis). In the mouse retina and optic nerve head, we identified numerous astrocytes that expressed GFAP, S100β, Sox2 and Sox9; however, we found no evidence for NIRG-like cells that were positive for Nkx2.2, nestin, and negative for GFAP. In the guinea pig retina, we did not find astrocytes or NIRG cells in the retina, whereas we identified astrocytes in the optic nerve. In the eyes of dogs and monkeys, we found astrocytes and NIRG-like cells scattered across inner layers of the retina and within the optic nerve. We conclude that NIRG-like cells are present in the retinas of canines and non-human primates, whereas the retinas of mice and guinea pigs do not contain NIRG cells.


Glia | 2010

A novel type of glial cell in the retina is stimulated by insulin-like growth factor 1 and may exacerbate damage to neurons and Müller glia

Andy J. Fischer; Melissa A. Scott; Christopher Zelinka; Patrick Sherwood

Recent studies have demonstrated that insulin can have profound affects on the survival of neurons within the retina. The purpose of this study was to determine how insulin‐like growth factor 1 (IGF1) influences retinal cells; in particular, the glial cells. We identify a novel type of glial cell in the avian retina and provide evidence that these cells can respond to acute damage and IGF1. In normal retinas, we found a distinct cell‐type, scattered across the ganglion cell and inner plexiform layers that express Sox2, Sox9, Nkx2.2, vimentin, and transitin, the avian homologue of mammalian nestin. These glial cells have a unique immunohistochemical profile, morphology, and distribution that are distinct among other known types of retinal glia, including microglia, oligodendrocytes, astrocytes, and Muller glia. We termed these cells nonastrocytic inner retinal glia‐like (NIRG) cells. We found that the NIRG cells may express the IGF1 receptor and respond to IGF1 by proliferating, migrating distally into the retina, and upregulating transitin. In addition, IGF1 stimulated microglia to become reactive and upregulate lysosomal membrane glycoprotein and CD45. With microglia and NIRG cells stimulated by IGF1 there were elevated levels of cell death and numerous focal detachments across the retina in response to excitotoxic damage. Cell death was prominent within the areas of detachment coinciding with a stark loss of Müller glia and accumulation of NIRG cells. We conclude that NIRG cells are a novel type of retinal glia that is sensitive to IGF1 and whose activity may impact the survival of neurons and Müller glia.


The Journal of Comparative Neurology | 2008

Transient expression of LIM‐domain transcription factors is coincident with delayed maturation of photoreceptors in the chicken retina

Andy J. Fischer; Shane Foster; Melissa A. Scott; Patrick Sherwood

In the retina of warm‐blooded vertebrates, photoreceptors are specified many days before the onset of synaptogenesis and the expression of photopigments. The factors that regulate the maturation of photoreceptors in the developing retina remain unknown. We report here that photoreceptors transiently express LIM‐domain transcription factors during the development of the chicken retina. We examined the differentiation of photoreceptors through the normal course of embryonic development and at the far periphery of the postnatal retina, where the differentiation of photoreceptors is slowed and persists across a spatial gradient. In the embryonic retina, we find visinin‐positive photoreceptors that transiently express Islet2 and Lim3 starting at E8 and ending around E15, but persisting in far peripheral regions of the retina through the first 2 weeks of postnatal development. During early stages of photoreceptor maturation, there is coincident and transient expression of the LIM‐domain factors with axonin1, a cell surface glycoprotein that is a member of the immunoglobulin superfamily. Coincident with the downregulation of Islet2 and Lim3, we find the upregulation of calbindin, red/green opsin, rhodopsin, and a synaptic marker in the outer plexiform layer (OPL; dystrophin). In the periphery of the postnatal retina, photoreceptors that express Islet2, Lim3, and axonin1 do not overlap with photoreceptors that express calbindin, red/green opsin, rhodopsin, and dystrophin. We propose that Islet2 and Lim3 may promote the expression of genes that are involved in the early stages of differentiation but may suppress the expression of genes that are required in the mature photoreceptors. J. Comp. Neurol. 506:584–603, 2008.


PLOS ONE | 2012

The Reactivity, Distribution and Abundance of Non-Astrocytic Inner Retinal Glial (NIRG) Cells Are Regulated by Microglia, Acute Damage, and IGF1

Christopher Zelinka; Melissa A. Scott; Leo Volkov; Andy J. Fischer

Recent studies have described a novel type of glial cell that is scattered across the inner layers of the avian retina and possibly the retinas of primates. These cells have been termed Non-astrocytic Inner Retinal Glial (NIRG) cells. These cells are stimulated by insulin-like growth factor 1 (IGF1) to proliferate, migrate distally into the retina, and become reactive. These changes in glial activity correlate with increased susceptibility of retinal neurons and Müller glia to excitotoxic damage. The purpose of this study was to further study the NIRG cells in retinas treated with IGF1 or acute damage. In response to IGF1, the reactivity, proliferation and migration of NIRG cells persists through 3 days after treatment. At 7 days after treatment, the numbers and distribution of NIRG cells returns to normal, suggesting that homeostatic mechanisms are in place within the retina to maintain the numbers and distribution of these glial cells. By comparison, IGF1-induced microglial reactivity persists for at least 7 days after treatment. In damaged retinas, we find a transient accumulation of NIRG cells, which parallels the accumulation of reactive microglia, suggesting that the reactivity of NIRG cells and microglia are linked. When the microglia are selectively ablated by the combination of interleukin 6 and clodronate-liposomes, the NIRG cells down-regulate transitin and perish within the following week, suggesting that the survival and phenotype of NIRG cells are somehow linked to the microglia. We conclude that the abundance, reactivity and retinal distribution of NIRG cells can be dynamic, are regulated by homoestatic mechanisms and are tethered to the microglia.


PLOS ONE | 2012

A Chick Model of Retinal Detachment: Cone Rich and Novel

Colleen M. Cebulla; Chris Zelinka; Melissa A. Scott; Martin Lubow; Amanda Bingham; Stephen Rasiah; Ashraf M. Mahmoud; Andy J. Fischer

Background Development of retinal detachment models in small animals can be difficult and expensive. Here we create and characterize a novel, cone-rich retinal detachment (RD) model in the chick. Methodology/Principal Findings Retinal detachments were created in chicks between postnatal days 7 and 21 by subretinal injections of either saline (SA) or hyaluronic acid (HA). Injections were performed through a dilated pupil with observation via surgical microscope, using the fellow eye as a control. Immunohistochemical analyses were performed at days 1, 3, 7, 10 and 14 after retinal detachment to evaluate the cellular responses of photoreceptors, Müller glia, microglia and nonastrocytic inner retinal glia (NIRG). Cell proliferation was detected with bromodeoxyuridine (BrdU)-incorporation and by the expression of proliferating cell nuclear antigen (PCNA). Cell death was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). As in mammalian models of RD, there is shortening of photoreceptor outer segments and mis-trafficking of photoreceptor opsins in areas of RD. Photoreceptor cell death was maximal 1 day after RD, but continued until 14 days after RD. Müller glia up-regulated glial fibriliary acidic protein (GFAP), proliferated, showed interkinetic nuclear migration, and migrated to the subretinal space in areas of detachment. Microglia became reactive; they up-regulated CD45, acquired amoeboid morphology, and migrated toward outer retina in areas of RD. Reactive NIRG cells accumulated in detached areas. Conclusions/Significance Subretinal injections of SA or HA in the chick eye successfully produced retinal detachments and cellular responses similar to those seen in standard mammalian models. Given the relatively large eye size, and considering the low cost, the chick model of RD offers advantages for high-throughput studies.


The Journal of Comparative Neurology | 2007

Development of bullwhip neurons in the embryonic chicken retina.

Andy J. Fischer; Jennifer J. Stanke; Kanika Ghai; Melissa A. Scott; Ghezal Omar

We have recently described large, unipolar neurons (named bullwhip cells) that regulate the proliferation of progenitors in the circumferential marginal zone (CMZ) of the postnatal chicken retina (Fischer et al. [2005] J. Neurosci. 25:10157–10166; [2006] J. Comp. Neurol. 496:479–494). There are only about 240 bullwhip cells in the entire retina, and these cells are easily identified by their unique morphology and immunoreactivity for glucagon, glucagon‐like peptide 1 (GLP1), and substance P. The purpose of this study was to elucidate the development of bullwhip cells in the embryonic chicken retina. By using bromodeoxyuridine birth dating, we found that the bullwhip cells are generated very early during retinal development, between E4 and E5. Glucagon peptide was first detected in bullwhip cells at about E10, whereas substance P was not detected in the bullwhip cells until E15. Although glucagon peptide is not present during early stages of retinal development, we detected mRNA for glucagon receptor beginning at E7 and mRNA for GLP1 receptor at E5 through E14. Morphological differentiation of the bullwhip cells begins at about E14 and is completed by E18. The bullwhip cells are greatly overproduced, and nearly 80% of these cells undergo apoptotic cell death during late stages of embryonic development. The bullwhip cells that survive are those that project an axon‐like process directly toward the CMZ; the cells that project in an inappropriate direction fail to survive. We conclude that cells fated to become bullwhip neurons are generated long before they begin to differentiate and that their survival depends on the orientation of their primary neurite. J. Comp. Neurol. 503:538–549, 2007.


PLOS ONE | 2015

Correction: Viewpoints on Factors for Successful Employment for Adults with Autism Spectrum Disorder.

Melissa A. Scott; Marita Falkmer; Sonya Girdler; Torbjörn Falkmer

There are errors in the Funding section. The correct funding information is as follows: The authors acknowledge the financial support of the Bankwest Curtin Economics Centre and the Cooperative Research Centre for Living with Autism Spectrum Disorders (Autism CRC), established and supported under the Australian Governments Cooperative Research Centres Program. The authors acknowledge the financial support of Curtin University to Melissa Scott through the Australian Postgraduate Award Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There is information missing from the Acknowledgments. The Acknowledgments should read: Our sincere thanks go to Wilson Waters, the software engineer from Alintech. The online version of the Q sort would not have been possible without your development and innovation. We are grateful to all the participants, their families and businesses who participated. A special mention goes to EDGE Employment Solutions, EPIC Employment Service, Barkuma’s Personnel Employment in South Australia, Autism Spectrum Australia and AIM Employment of the Autism Association of Western Australia, for their assistance with participant recruitment in this study. The authors acknowledge the financial support of the Bankwest Curtin Economics Centre and the Cooperative Research Centre for Living with Autism Spectrum Disorders (Autism CRC), established and supported under the Australian Governments Cooperative Research Centres Program.

Collaboration


Dive into the Melissa A. Scott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge