Melissa D. Landis
Houston Methodist Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melissa D. Landis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Chad J. Creighton; Xiaoxian Li; Melissa D. Landis; J. Michael Dixon; Veronique Neumeister; Ashley Sjolund; David L. Rimm; Helen Wong; Angel Rodriguez; Jason I. Herschkowitz; Cheng Fan; Xiaomei Zhang; Xiaping He; Anne C. Pavlick; M. Carolina Gutierrez; Lorna Renshaw; Alexey Larionov; Dana Faratian; Susan G. Hilsenbeck; Charles M. Perou; Michael T. Lewis; Jeffrey M. Rosen; Jenny Chang
Some breast cancers have been shown to contain a small fraction of cells characterized by CD44+/CD24−/low cell-surface antigen profile that have high tumor-initiating potential. In addition, breast cancer cells propagated in vitro as mammospheres (MSs) have also been shown to be enriched for cells capable of self-renewal. In this study, we have defined a gene expression signature common to both CD44+/CD24−/low and MS-forming cells. To examine its clinical significance, we determined whether tumor cells surviving after conventional treatments were enriched for cells bearing this CD44+/CD24−/low-MS signature. The CD44+/CD24−/low-MS signature was found mainly in human breast tumors of the recently identified “claudin-low” molecular subtype, which is characterized by expression of many epithelial-mesenchymal-transition (EMT)-associated genes. Both CD44+/CD24−/low-MS and claudin-low signatures were more pronounced in tumor tissue remaining after either endocrine therapy (letrozole) or chemotherapy (docetaxel), consistent with the selective survival of tumor-initiating cells posttreatment. We confirmed an increased expression of mesenchymal markers, including vimentin (VIM) in cytokeratin-positive epithelial cells metalloproteinase 2 (MMP2), in two separate sets of postletrozole vs. pretreatment specimens. Taken together, these data provide supporting evidence that the residual breast tumor cell populations surviving after conventional treatment may be enriched for subpopulations of cells with both tumor-initiating and mesenchymal features. Targeting proteins involved in EMT may provide a therapeutic strategy for eliminating surviving cells to prevent recurrence and improve long-term survival in breast cancer patients.
Stem cell reports | 2014
Suling Liu; Yang Cong; Dong Wang; Yu-Min Sun; Lu Deng; Yajing Liu; Rachel Martin-Trevino; Li Shang; Sean P. McDermott; Melissa D. Landis; Suhyung Hong; April Adams; Rosemarie D’Angelo; Christophe Ginestier; Emmanuelle Charafe-Jauffret; Shawn G. Clouthier; Daniel Birnbaum; Stephen T. C. Wong; Ming Zhan; Jenny C. Chang; Max S. Wicha
Summary Previous studies have suggested that breast cancer stem cells (BCSCs) mediate metastasis, are resistant to radiation and chemotherapy, and contribute to relapse. Although several BCSC markers have been described, it is unclear whether these markers identify the same or independent BCSCs. Here, we show that BCSCs exist in distinct mesenchymal-like (epithelial-mesenchymal transition [EMT]) and epithelial-like (mesenchymal-epithelial transition [MET]) states. Mesenchymal-like BCSCs characterized as CD24−CD44+ are primarily quiescent and localized at the tumor invasive front, whereas epithelial-like BCSCs express aldehyde dehydrogenase (ALDH), are proliferative, and are located more centrally. The gene-expression profiles of mesenchymal-like and epithelial-like BCSCs are remarkably similar across different molecular subtypes of breast cancer, and resemble those of distinct basal and luminal stem cells found in the normal breast. We propose that the plasticity of BCSCs that allows them to transition between EMT- and MET-like states endows these cells with the capacity for tissue invasion, dissemination, and growth at metastatic sites.
Cancer Research | 2008
Mei Zhang; Fariba Behbod; Rachel L. Atkinson; Melissa D. Landis; Frances S. Kittrell; David Edwards; Daniel Medina; Anna Tsimelzon; Susan G. Hilsenbeck; Jeffrey E. Green; Aleksandra M. Michalowska; Jeffrey M. Rosen
Using a syngeneic p53-null mouse mammary gland tumor model that closely mimics human breast cancer, we have identified, by limiting dilution transplantation and in vitro mammosphere assay, a Lin(-)CD29(H)CD24(H) subpopulation of tumor-initiating cells. Upon subsequent transplantation, this subpopulation generated heterogeneous tumors that displayed properties similar to the primary tumor. Analysis of biomarkers suggests the Lin(-)CD29(H)CD24(H) subpopulation may have arisen from a bipotent mammary progenitor. Differentially expressed genes in the Lin(-)CD29(H)CD24(H) mouse mammary gland tumor-initiating cell population include those involved in DNA damage response and repair, as well as genes involved in epigenetic regulation previously shown to be critical for stem cell self-renewal. These studies provide in vitro and in vivo data that support the cancer stem cell (CSC) hypothesis. Furthermore, this p53-null mouse mammary tumor model may allow us to identify new CSC markers and to test the functional importance of these markers.
Nature | 2014
Xi Chen; Dimitrios Iliopoulos; Qing Zhang; Qianzi Tang; Matthew B. Greenblatt; Maria Hatziapostolou; Elgene Lim; Wai Leong Tam; Min Ni; Yiwen Chen; Junhua Mai; Haifa Shen; Dorothy Hu; Stanley Adoro; Bella Hu; Minkyung Song; Chen Tan; Melissa D. Landis; Mauro Ferrari; Sandra J. Shin; Myles Brown; Jenny Chang; X. Shirley Liu; Laurie H. Glimcher
Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization. One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 (ref. 2) and its substrate XBP1 (ref. 3). Previous studies report UPR activation in various human tumours, but the role of XBP1 in cancer progression in mammary epithelial cells is largely unknown. Triple-negative breast cancer (TNBC)—a form of breast cancer in which tumour cells do not express the genes for oestrogen receptor, progesterone receptor and HER2 (also called ERBB2 or NEU)—is a highly aggressive malignancy with limited treatment options. Here we report that XBP1 is activated in TNBC and has a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumour growth and tumour relapse and reduced the CD44highCD24low population. Hypoxia-inducing factor 1α (HIF1α) is known to be hyperactivated in TNBCs. Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Weijia Zhang; Kazuharu Kai; Dong Soon Choi; Takayuki Iwamoto; Yen H. Nguyen; Helen Wong; Melissa D. Landis; Naoto Ueno; Jenny C. Chang; Lidong Qin
Here we report a microfluidics method to enrich physically deformable cells by mechanical manipulation through artificial microbarriers. Driven by hydrodynamic forces, flexible cells or cells with high metastatic propensity change shape to pass through the microbarriers and exit the separation device, whereas stiff cells remain trapped. We demonstrate the separation of (i) a mixture of two breast cancer cell types (MDA-MB-436 and MCF-7) with distinct deformabilities and metastatic potentials, and (ii) a heterogeneous breast cancer cell line (SUM149), into enriched flexible and stiff subpopulations. We show that the flexible phenotype is associated with overexpression of multiple genes involved in cancer cell motility and metastasis, and greater mammosphere formation efficiency. Our observations support the relationship between tumor-initiating capacity and cell deformability, and demonstrate that tumor-initiating cells are less differentiated in terms of cell biomechanics.
Clinical Cancer Research | 2013
Anne F. Schott; Melissa D. Landis; Gabriela Dontu; Kent A. Griffith; Rachel Layman; Ian E. Krop; Lacey A. Paskett; Helen Wong; Lacey E. Dobrolecki; Michael T. Lewis; A. Froehlich; Jaya Paranilam; Daniel F. Hayes; Max S. Wicha; Jenny Chang
Purpose: Accumulating evidence supports the existence of breast cancer stem cells (BCSC), which are characterized by their capacity to self-renew and divide indefinitely and resistance to conventional therapies. The Notch pathway is important for stem cell renewal and is a potential target for BCSC-directed therapy. Experimental Design: Using human breast tumorgraft studies, we evaluated the impact of gamma secretase inhibitors (GSI) on the BCSC population and the efficacy of combining GSI with docetaxel treatment. The mouse experimental therapy paralleled a concurrent clinical trial in patients with advanced breast cancer, designed to determine the maximum-tolerated dose of the GSI, MK-0752, administered sequentially with docetaxel, and to evaluate BCSC markers in serial tumor biopsies. Results: Treatment with GSI reduced BCSCs in MC1 and BCM-2147 tumorgrafts by inhibition of the Notch pathway. GSI enhanced the efficacy of docetaxel in preclinical studies. In the clinical trial, 30 patients with advanced breast cancer were treated with escalating doses of MK-0752 plus docetaxel. Clinically, meaningful doses of both drugs were possible with manageable toxicity and preliminary evidence of efficacy. A decrease in CD44+/CD24−, ALDH+, and mammosphere-forming efficiency were observed in tumors of patients undergoing serial biopsies. Conclusions: These preclinical data show that pharmacologic inhibition of the Notch pathway can reduce BCSCs in breast tumorgraft models. The clinical trial shows feasibility of combination GSI and chemotherapy, and together these results encourage further study of Notch pathway inhibitors in combination with chemotherapy in breast cancer. Clin Cancer Res; 19(6); 1512–24. ©2012 AACR.
Breast Cancer Research | 2013
Melissa D. Landis; Brian D. Lehmann; Jennifer A. Pietenpol; Jenny Chang
Despite improved detection and reduction of breast cancer-related deaths over the recent decade, breast cancer remains the second leading cause of cancer death for women in the US, with 39,510 women expected to succumb to metastatic disease in 2012 alone (American Cancer Society, Cancer Facts &Figures 2012. Atlanta: American Cancer Society; 2012). Continued efforts in classification of breast cancers based on gene expression profiling and genomic sequencing have revealed an underlying complexity and molecular heterogeneity within the disease that continues to challenge therapeutic interventions. To successfully identify and translate new treatment regimens to the clinic, it is imperative that our preclinical models recapitulate this complexity and heterogeneity. In this review article, we discuss the recent advances in development and classification of patient-derived human breast tumor xenograft models that have the potential to facilitate the next phase of drug discovery for personalized cancer therapy based on the unique driver signaling pathways in breast tumor subtypes.
PLOS ONE | 2012
Bhuvanesh Dave; Melissa D. Landis; Lacey E. Dobrolecki; Meng Fen Wu; Xiaomei Zhang; Thomas F. Westbrook; Susan G. Hilsenbeck; Dan Liu; Michael T. Lewis; David J. Tweardy; Jenny Chang
Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24−/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24−/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.
Breast Cancer Research | 2013
Rachel L. Atkinson; Wei Yang; Daniel G. Rosen; Melissa D. Landis; Helen Wong; Michael T. Lewis; Chad J. Creighton; Krystal Sexton; Sg Hilsenbeck; Aysegul A. Sahin; Abenaa M. Brewster; Wendy A. Woodward; Jenny C. Chang
IntroductionWe hypothesized that cells present in normal tissue that bear cancer stem cell markers may represent a cancer cell of origin or a microenvironment primed for tumor development, and that their presence may correlate with the clinically defined subtypes of breast cancer that show increased tumorigenicity and stem cell features.MethodsNormal tissues sampled at least 5 cm from primary tumors (normal adjacent tissue) were obtained from 61 chemotherapy-naive patients with breast cancer treated with mastectomy. Samples were stained simultaneously with immunofluorescence for CD44/CD49f/CD133/2 stem cell markers. We assessed the association between CD44+CD49f+CD133/2+ staining in normal adjacent tissue and breast cancer receptor subtype (defined by the expression of the estrogen (ER), progesterone (PR), or human epidermal growth factor-2 (Her2) receptors). We also examined the correlation between CD44+CD49f+CD133/2+ immunofluorescence and each of two previously published gene signatures, one derived from stem-cell enriched tissue and one from BRCA mutated tissue expected to have defective DNA repair.ResultsPatients with triple negative breast cancer (ER–/PR–/HER2–) expressed CD44+CD49f+CD133/2+ in 9 of 9 normal adjacent tissue samples compared with 7 of 52 ER+ and/or Her2+ tumors (P < 0.001). Further, expression of CD44+CD49f+CD133/2+ by normal adjacent tissue correlated positively with a stem cell-derived tumorigenic signature (P <0.001) and inversely with a defective DNA-repair signature (P <0.001).ConclusionNormal cells bearing cancer stem cell markers are associated with the triple negative receptor subtype of breast cancer. This study suggests stem cell staining and gene expression signatures from normal breast tissues represent novel tissue-based risk biomarkers for triple negative breast cancer. Validation of these results in additional studies of normal tissue from cancer-free women could lay the foundation for future targeted triple negative breast cancer prevention strategies.
Stem Cells | 2014
Dong Soon Choi; Elvin Blanco; Yoo Shin Kim; Angel Rodriguez; Hong Zhao; Tim H M Huang; Chun Liang Chen; Guangxu Jin; Melissa D. Landis; Lacey A. Burey; Wei Qian; Sergio Granados; Bhuvanesh Dave; Helen Wong; Mauro Ferrari; Stephen T. C. Wong; Jenny Chang
Triple negative breast cancer (TNBC) is known to contain a high percentage of CD44+/CD24−/low cancer stem cells (CSCs), corresponding with a poor prognosis despite systemic chemotherapy. Chloroquine (CQ), an antimalarial drug, is a lysotropic reagent which inhibits autophagy. CQ was identified as a potential CSC inhibitor through in silico gene expression signature analysis of the CD44+/CD24−/low CSC population. Autophagy plays a critical role in adaptation to stress conditions in cancer cells, and is related with drug resistance and CSC maintenance. Thus, the objectives of this study were to examine the potential enhanced efficacy arising from addition of CQ to standard chemotherapy (paclitaxel) in TNBC and to identify the mechanism by which CQ eliminates CSCs in TNBCs. Herein, we report that CQ sensitizes TNBC cells to paclitaxel through inhibition of autophagy and reduces the CD44+/CD24−/low CSC population in both preclinical and clinical settings. Also, we are the first to report a mechanism by which CQ regulates the CSCs in TNBC through inhibition of the Janus‐activated kinase 2 (Jak2)—signal transducer and activator of transcription 3 signaling pathway by reducing the expression of Jak2 and DNA methyltransferase 1. Stem Cells 2014;32:2309–2323