Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhuvanesh Dave is active.

Publication


Featured researches published by Bhuvanesh Dave.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase

Joan T. Garrett; Maria Graciela Olivares; Cammie Rinehart; Nara De Matos Granja-Ingram; Violeta Sanchez; Anindita Chakrabarty; Bhuvanesh Dave; Rebecca S. Cook; William Pao; Eliot McKinely; Henry C. Manning; Jenny Chang; Carlos L. Arteaga

Sustained and complete inhibition of HER3 and its output to PI3K/Akt are required for the optimal antitumor effect of therapeutic inhibitors of the HER2 oncogene. Here, we show that, after inhibition of the HER2 tyrosine kinase with lapatinib, there is PI3K/Akt and FoxO3a-dependent up-regulation of HER3 mRNA and protein. Up-regulated HER3 was then phosphorylated by residual HER2 activity, thus partially maintaining P-Akt and limiting the antitumor action of lapatinib. Inhibition of HER3 with siRNA or a neutralizing HER3 antibody sensitized HER2+ breast cancer cells and xenografts to lapatinib both in vitro and in vivo. Combined blockade of HER2 and HER3 inhibited pharmacodynamic biomarkers of PI3K/Akt activity more effectively than each inhibitor alone. These results suggest that because of HER3-mediated compensation, current clinical inhibitors of HER2 and PI3K/Akt will not block the PI3K pathway completely. They also suggest that therapeutic inhibitors of HER3 should be used in combination with HER2 inhibitors and PI3K pathway inhibitors in patients with HER2- and PI3K-dependent cancers.


Journal of Clinical Oncology | 2011

Loss of Phosphatase and Tensin Homolog or Phosphoinositol-3 Kinase Activation and Response to Trastuzumab or Lapatinib in Human Epidermal Growth Factor Receptor 2–Overexpressing Locally Advanced Breast Cancers

Bhuvanesh Dave; Ilenia Migliaccio; M. Carolina Gutierrez; Meng Fen Wu; Gary C. Chamness; Helen Wong; Archana Narasanna; Anindita Chakrabarty; Susan G. Hilsenbeck; Jian Huang; Mothaffar F. Rimawi; Rachel Schiff; Carlos L. Arteaga; C. Kent Osborne; Jenny Chang

PURPOSE Phosphatase and tensin homolog (PTEN) loss or activating mutations of phosphoinositol-3 (PI3) kinase (PIK3CA) may be associated with trastuzumab resistance. Trastuzumab, the humanized human epidermal growth factor receptor 2 (HER2) monoclonal antibody, and lapatinib, an epidermal growth factor receptor/HER2 tyrosine kinase inhibitor, are both established treatments for HER2-overexpressing breast cancers. Understanding of the cellular response to HER2-targeted therapies is needed to tailor treatments and to identify patients less likely to benefit. METHODS We evaluated the effect of trastuzumab or lapatinib in three HER2-overexpressing cell lines. We confirmed the in vitro observations in two neoadjuvant clinical trials in patients with HER2 overexpression; 35 patients received trastuzumab as a single agent for the first 3 weeks, then docetaxel every 3 weeks for 12 weeks (trastuzumab regimen), whereas 49 patients received lapatinib as a single agent for 6 weeks, followed by trastuzumab/docetaxel for 12 weeks before primary surgery (lapatinib regimen). Apoptosis, Ki67, p-MAPK, p-AKT, and PTEN were assessed by immunohistochemistry. Genomic DNA was sequenced for PIK3CA mutations. RESULTS Under low PTEN conditions, in vitro data indicate that lapatinib alone and in combination with trastuzumab was effective in decreasing p-MAPK and p-AKT levels, whereas trastuzumab was ineffective. In the clinical trials, we confirmed that low PTEN or activating mutation in PIK3CA conferred resistance to the trastuzumab regimen (P = .015), whereas low PTEN tumors were associated with a high pathologic complete response rate (P = .007). CONCLUSION Activation of PI3 kinase pathway is associated with trastuzumab resistance, whereas low PTEN predicted for response to lapatinib. These observations support clinical trials with the combination of both agents.


Breast Cancer Research | 2012

Epithelial-mesenchymal transition, cancer stem cells and treatment resistance

Bhuvanesh Dave; Vivek Mittal; Nicholas M Tan; Jenny C. Chang

Breast cancer relapse, in a large number of patients, after initial response to standard of care therapy warrants development of novel therapies against recurrent and metastatic cancer. Cancer stem cells (CSCs), present in breast tumors while being intrinsically resistant to conventional therapy, have the ability to self renew and cause tumor recurrence. The residual tumors after therapy, with dramatic enrichment of the CSCs, have all the hallmarks of epithelial- mesenchymal transition (EMT). This review will focus on the link between EMT, CSCs and treatment resistance, since a better understanding of these interactions will allow us to effectively target the residual population after therapy.


Oncogene | 2011

Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition

Brent N Rexer; Amy-Joan L. Ham; Cammie Rinehart; S. Hill; N. De Matos Granja-Ingram; Ana M. Gonzalez-Angulo; Gordon B. Mills; Bhuvanesh Dave; Jenny C. Chang; D. C. Liebler; Carlos L. Arteaga

Despite the initial effectiveness of the tyrosine kinase inhibitor lapatinib against HER2 gene-amplified breast cancers, most patients eventually relapse after treatment, implying that tumors acquire mechanisms of drug resistance. To discover these mechanisms, we generated six lapatinib-resistant HER2-overexpressing human breast cancer cell lines. In cells that grew in the presence of lapatinib, HER2 autophosphorylation was undetectable, whereas active phosphoinositide-3 kinase (PI3K)-Akt and mitogen-activated protein kinase (MAPK) were maintained. To identify networks maintaining these signaling pathways, we profiled the tyrosine phosphoproteome of sensitive and resistant cells using an immunoaffinity-enriched mass spectrometry method. We found increased phosphorylation of Src family kinases (SFKs) and putative Src substrates in several resistant cell lines. Treatment of these resistant cells with Src kinase inhibitors partially blocked PI3K-Akt signaling and restored lapatinib sensitivity. Further, SFK mRNA expression was upregulated in primary HER2+ tumors treated with lapatinib. Finally, the combination of lapatinib and the Src inhibitor AZD0530 was more effective than lapatinib alone at inhibiting pAkt and growth of established HER2-positive BT-474 xenografts in athymic mice. These data suggest that increased Src kinase activity is a mechanism of lapatinib resistance and support the combination of HER2 antagonists with Src inhibitors early in the treatment of HER2+ breast cancers in order to prevent or overcome resistance to HER2 inhibitors.


Cancer Research | 2013

Trastuzumab-Resistant Cells Rely on a HER2-PI3K-FoxO-Survivin Axis and Are Sensitive to PI3K Inhibitors

Anindita Chakrabarty; Neil E. Bhola; Cammie R. Sutton; Ritwik Ghosh; Maria G. Kuba; Bhuvanesh Dave; Jenny C. Chang; Carlos L. Arteaga

The antibody trastuzumab is approved for treatment of patients with HER2 (ERBB2)-overexpressing breast cancer. A significant fraction of these tumors are either intrinsically resistant or acquire resistance rendering the drug ineffective. The development of resistance has been attributed to failure of the antibody to inhibit phosphoinositide 3-kinase (PI3K), which is activated by the HER2 network. Herein, we examined the effects of PI3K blockade in trastuzumab-resistant breast cancer cell lines. Treatment with the pan-PI3K inhibitor XL147 and trastuzumab reduced proliferation and pAKT levels, triggering apoptosis of trastuzumab-resistant cells. Compared with XL147 alone, the combination exhibited a superior antitumor effect against trastuzumab-resistant tumor xenografts. Furthermore, treatment with XL147 and trastuzumab reduced the cancer stem-cell (CSC) fraction within trastuzumab-resistant cells both in vitro and in vivo. These effects were associated with FoxO-mediated inhibition of transcription of the antiapoptosis gene survivin (BIRC5) and the CSC-associated cytokine interleukin-8. RNA interference-mediated or pharmacologic inhibition of survivin restored sensitivity to trastuzumab in resistant cells. In a cohort of patients with HER2-overexpressing breast cancer treated with trastuzumab, higher pretreatment tumor levels of survivin RNA correlated with poor response to therapy. Together, our results suggest that survivin blockade is required for therapeutic responses to trastuzumab and that by combining trastuzumab and PI3K inhibitors, CSCs can be reduced within HER2(+) tumors, potentially preventing acquired resistance to anti-HER2 therapy.


Cancer Research | 2009

Comparison of human and rat uterine leiomyomata: identification of a dysregulated mammalian target of rapamycin pathway.

Judy S. Crabtree; Scott A. Jelinsky; Heather A. Harris; Sung E. Choe; Monette M. Cotreau; Michelle L. Kimberland; Ewa Wilson; Kathryn Saraf; Wei Liu; Adrienne S. McCampbell; Bhuvanesh Dave; Russell Broaddus; Eugene L. Brown; Wenling Kao; Jerauld Skotnicki; Magid Abou-Gharbia; Richard C. Winneker; Cheryl L. Walker

Uterine leiomyomata, or fibroids, are benign tumors of the uterine myometrium that significantly affect up to 30% of reproductive-age women. Despite being the primary cause of hysterectomy in the United States, accounting for up to 200,000 procedures annually, the etiology of leiomyoma remains largely unknown. As a basis for understanding leiomyoma pathogenesis and identifying targets for pharmacotherapy, we conducted transcriptional profiling of leiomyoma and unaffected myometrium from humans and Eker rats, the best characterized preclinical model of leiomyomata. A global comparison of mRNA from leiomyoma versus myometrium in human and rat identified a highly significant overlap of dysregulated gene expression in leiomyomata. An unbiased pathway analysis using a method of gene-set enrichment based on the sigPathway algorithm detected the mammalian target of rapamycin (mTOR) pathway as one of the most highly up-regulated pathways in both human and rat tumors. To validate this pathway as a therapeutic target for uterine leiomyomata, preclinical studies were conducted in Eker rats. These rats develop uterine leiomyomata as a consequence of loss of Tsc2 function and up-regulation of mTOR signaling. Inhibition of mTOR in female Eker rats with the rapamycin analogue WAY-129327 for 2 weeks decreased mTOR signaling and cell proliferation in tumors, and treatment for 4 months significantly decreased tumor incidence, multiplicity, and size. These results identify dysregulated mTOR signaling as a component of leiomyoma etiology across species and directly show the dependence of uterine leiomyomata with activated mTOR on this signaling pathway for growth.


Scientific Reports | 2015

Three-Dimensional In Vitro Co-Culture Model of Breast Tumor using Magnetic Levitation

Hamsa Jaganathan; Jacob A. Gage; Fransisca Leonard; Srimeenakshi Srinivasan; Glauco R. Souza; Bhuvanesh Dave; Biana Godin

In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors.


Journal of Mammary Gland Biology and Neoplasia | 2009

Treatment Resistance in Stem Cells and Breast Cancer

Bhuvanesh Dave; Jenny Chang

Cancer stem cells are resistant to current chemotherapy and radiation regimens available for breast cancer, making it imperative to study the mechanisms of resistance and development of therapeutic strategies that targets the tumor initiating cell population. One of the difficulties in identifying new drug targets has been that our current high throughput drug screens look for tumor shrinkage and do not incorporate the impact of compounds on the cancer stem cell population. In this review we discuss the literature on treatment resistance in breast cancer and the design of new clinical trials for test compounds which will allow us to determine both the reduction in tumor size and decrease in cancer stem cell population. In order to detect the effect of target compounds on cancer stem cells in a clinical setting, we will need to do multiple assays which include high throughput flow sorting analysis to determine the total number of CD44+/CD24−/low/Lin− and ALDH1 positive cells, as well as in-vitro mammosphere formation assay which is a functional assay dependent on the self renewal and anchorage independent growth properties of these cells.


Clinical Cancer Research | 2008

Loss of Tuberous Sclerosis Complex-2 Function and Activation of Mammalian Target of Rapamycin Signaling in Endometrial Carcinoma

Karen H. Lu; Weiguo Wu; Bhuvanesh Dave; Brian M. Slomovitz; Thomas W. Burke; Mark F. Munsell; Russell Broaddus; Cheryl L. Walker

Purpose: The involvement of phosphatase and tensin homologue deleted on chromosome ten (PTEN) in endometrial carcinoma has implicated phosphatidylinositol 3-kinase signaling and mammalian target of rapamycin (mTOR) activation in this disease. Understanding the extent of mTOR involvement and the mechanism responsible for activation is important, as mTOR inhibitors are currently being evaluated in clinical trials for endometrial carcinoma. Although tuberous sclerosis complex 2 (TSC2) is the “gatekeeper” for mTOR activation, little is known about defects in the TSC2 tumor suppressor or signaling pathways that regulate TSC2, such as LKB1/AMP-activated protein kinase, in the development of endometrial carcinoma. Experimental Design: We determined the frequency of mTOR activation in endometrial carcinoma (primary tumors and cell lines) and investigated PTEN, LKB1, and TSC2 defects as underlying cause(s) of mTOR activation, and determined the ability of rapamycin to reverse these signaling defects in endometrial carcinoma cells. Results: Activation of mTOR was a consistent feature in endometrial carcinomas and cell lines. In addition to PTEN, loss of TSC2 and LKB1 expression occurred in a significant fraction of primary tumors (13% and 21%, respectively). In tumors that retained TSC2 expression, phosphorylation of tuberin at S939 was observed with a high frequency, indicating that mTOR repression by TSC2 had been relieved via AKT phosphorylation of this tumor suppressor. In PTEN-null and LKB1-null endometrial carcinoma cell lines with functional inactivation of TSC2, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 were able to inhibit AKT and mTOR signaling and reverse TSC2 phosphorylation. In contrast, although rapamycin inhibited mTOR signaling, it did not relieve phosphorylation of TSC2 at S939. Conclusions: Inactivation of TSC2 via loss of expression or phosphorylation occurred frequently in endometrial carcinoma to activate mTOR signaling. High-frequency mTOR activation supports mTOR as a rational therapeutic target for endometrial carcinoma. However, whereas rapamycin and its analogues may be efficacious at inhibiting mTOR activity, these drugs do not reverse the functional inactivation of TSC2 that occurs in these tumors.


PLOS ONE | 2012

Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model

Bhuvanesh Dave; Melissa D. Landis; Lacey E. Dobrolecki; Meng Fen Wu; Xiaomei Zhang; Thomas F. Westbrook; Susan G. Hilsenbeck; Dan Liu; Michael T. Lewis; David J. Tweardy; Jenny Chang

Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24−/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24−/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.

Collaboration


Dive into the Bhuvanesh Dave's collaboration.

Top Co-Authors

Avatar

Jenny C. Chang

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Jenny Chang

University of California

View shared research outputs
Top Co-Authors

Avatar

Dong Soon Choi

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Helen Wong

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Melissa D. Landis

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Roberto R. Rosato

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Angel Rodriguez

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael T. Lewis

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sergio Granados

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge