Melissa G. Piper
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melissa G. Piper.
Journal of extracellular vesicles | 2013
Kenneth W. Witwer; Edit I. Buzás; Lynne T. Bemis; Adriana Bora; Cecilia Lässer; Jan Lötvall; Esther Nolte-‘t Hoen; Melissa G. Piper; Sarada Sivaraman; Johan Skog; Clotilde Théry; Marca H. M. Wauben; Fred H. Hochberg
The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techniques that can be harnessed to address the many gaps in our current knowledge were the subject of a special workshop of the International Society for Extracellular Vesicles (ISEV) in New York City in October 2012. As part of the “ISEV Research Seminar: Analysis and Function of RNA in Extracellular Vesicles (evRNA)”, 6 round-table discussions were held to provide an evidence-based framework for isolation and analysis of EV, purification and analysis of associated RNA molecules, and molecular engineering of EV for therapeutic intervention. This article arises from the discussion of EV isolation and analysis at that meeting. The conclusions of the round table are supplemented with a review of published materials and our experience. Controversies and outstanding questions are identified that may inform future research and funding priorities. While we emphasize the need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results, we also recognize that continual development and evaluation of techniques will be necessary as new knowledge is amassed. On many points, consensus has not yet been achieved and must be built through the reporting of well-controlled experiments.
PLOS Biology | 2012
Hina Kalra; Richard J. Simpson; Hong Ji; Elena Aikawa; Peter Altevogt; Philip W. Askenase; Vincent C. Bond; Francesc E. Borràs; Xandra O. Breakefield; Vivian Budnik; Edit I. Buzás; Giovanni Camussi; Aled Clayton; Emanuele Cocucci; Juan M. Falcon-Perez; Susanne Gabrielsson; Yong Song Gho; Dwijendra K. Gupta; H. C. Harsha; An Hendrix; Andrew F. Hill; Jameel M. Inal; Guido Jenster; Eva-Maria Krämer-Albers; Sai Kiang Lim; Alicia Llorente; Jan Lötvall; Antonio Marcilla; Lucia Mincheva-Nilsson; Irina Nazarenko
Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles.
Blood | 2013
Noura Ismail; Yijie Wang; Duaa Dakhlallah; Leni Moldovan; Kitty Agarwal; Kara Batte; Prexy Shah; Jon Wisler; Timothy D. Eubank; Susheela Tridandapani; Michael E. Paulaitis; Melissa G. Piper; Clay B. Marsh
Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets, while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and explored their role in the differentiation of naive monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including mono cytes, endothelial cells, epithelial cells, and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.
Journal of Cellular and Molecular Medicine | 2014
Leni Moldovan; Kara Batte; Joanne Trgovcich; Jon Wisler; Clay B. Marsh; Melissa G. Piper
MicroRNAs (miRNAs) have emerged as important regulators in the post‐transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro‐spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miRNAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma‐ and serum‐derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
BMC Medical Genomics | 2011
Ji-Hoon Cho; Richard Gelinas; Kai Wang; Alton Etheridge; Melissa G. Piper; Kara Batte; Duaa Dakhallah; Jennifer A. Price; Dan Bornman; Shile Zhang; Clay B. Marsh; David Galas
BackgroundThe molecular pathways involved in the interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches, with global expression data sets, were used to identify perturbed gene networks, to gain some understanding of the underlying mechanisms, and to develop specific hypotheses relevant to these chronic lung diseases.MethodsLung tissue samples from patients with different types of ILD were obtained from the Lung Tissue Research Consortium and total cell RNA was isolated. Global mRNA and microRNA were profiled by hybridization and amplification-based methods. Differentially expressed genes were compiled and used to identify critical signaling pathways and potential biomarkers. Modules of genes were identified that formed a regulatory network, and studies were performed on cultured cells in vitro for comparison with the in vivo results.ResultsBy profiling mRNA and microRNA (miRNA) expression levels, we found subsets of differentially expressed genes that distinguished patients with ILDs from controls and that correlated with different disease stages and subtypes of ILDs. Network analysis, based on pathway databases, revealed several disease-associated gene modules, involving genes from the TGF-β, Wnt, focal adhesion, and smooth muscle actin pathways that are implicated in advancing fibrosis, a critical pathological process in ILDs. A more comprehensive approach was also adapted to construct a putative global gene regulatory network based on the perturbation of key regulatory elements, transcription factors and microRNAs. Our data underscores the importance of TGF-β signaling and the persistence of smooth muscle actin-containing fibroblasts in these diseases. We present evidence that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT) and the resultant persistence of mesenchymal cells in these diseases.ConclusionsWe present a comprehensive overview of the molecular networks perturbed in ILDs, discuss several potential key molecular regulatory circuits, and identify microRNA species that may play central roles in facilitating the progression of ILDs. These findings advance our understanding of these diseases at the molecular level, provide new molecular signatures in defining the specific characteristics of the diseases, suggest new hypotheses, and reveal new potential targets for therapeutic intervention.
Methods of Molecular Biology | 2013
Leni Moldovan; Kara Batte; Yijie Wang; Jon Wisler; Melissa G. Piper
Small extracellular vesicles are released from both healthy and disease cells to facilitate cellular communication. They have a wide variety of names including exosomes, microvesicles and microparticles. Depending on their size, very small extracellular vesicles originating from the endocytic pathway have been called exosomes and in some cases nanovesicles. Collectively, extracellular vesicles are important mediators of a wide variety of functions including immune cell development and homeostasis. Encapsulated in the extracellular vesicles are proteins and nucleic acids including mRNA and microRNA molecules. MicroRNAs are small, non-coding RNA molecules implicated in the post-transcriptional control of gene expression that have emerged as important regulatory molecules and are involved in disease pathogenesis including cancer. In some diseases, not only does the quantity and the subpopulations of extracellular vesicles change in the peripheral blood but also microRNAs. Here, we described the analysis of peripheral blood extracellular vesicles by flow cytometry and the RNA extraction from extracellular vesicles isolated from the plasma or serum to profile microRNA expression.
Journal of Immunology | 2010
Yijie Wang; Hongmei Wang; Melissa G. Piper; Sara McMaken; Xiaokui Mo; Judy M. Opalek; Ann Marie Schmidt; Clay B. Marsh
The receptor for advanced glycation end products (RAGE) is produced either as a transmembrane or soluble form (sRAGE). Substantial evidence supports a role for RAGE and its ligands in disease. sRAGE is reported to be a competitive, negative regulator of membrane RAGE activation, inhibiting ligand binding. However, some reports indicate that sRAGE is associated with inflammatory disease. We sought to define the biological function of sRAGE on inflammatory cell recruitment, survival, and differentiation in vivo and in vitro. To test the in vivo impact of sRAGE, the recombinant protein was intratracheally administered to mice, which demonstrated monocyte- and neutrophil-mediated lung inflammation. We also observed that sRAGE induced human monocyte and neutrophil migration in vitro. Human monocytes treated with sRAGE produced proinflammatory cytokines and chemokines. Our data demonstrated that sRAGE directly bound human monocytes and monocyte-derived macrophages. Binding of sRAGE to monocytes promoted their survival and differentiation to macrophages. Furthermore, sRAGE binding to cells increased during maturation, which was similar in freshly isolated mouse monocytes compared with mature tissue macrophages. Because sRAGE activated cell survival and differentiation, we examined intracellular pathways that were activated by sRAGE. In primary human monocytes and macrophages, sRAGE treatment activated Akt, Erk, and NF-κB, and their activation appeared to be critical for cell survival and differentiation. Our data suggest a novel role for sRAGE in monocyte- and neutrophil-mediated inflammation and mononuclear phagocyte survival and differentiation.
Expert Review of Respiratory Medicine | 2009
Serge P. Nana-Sinkam; Todd Karsies; Brent Riscili; Michael E. Ezzie; Melissa G. Piper
Recent evidence demonstrates the importance of microRNAs (miRNAs) in several human diseases, including solid and hematological malignancies, diabetes and diseases of the nervous system. However, little is known about the role that miRNAs play in the development and pathogenesis of lung diseases. Murine models of disease suggest that the loss of specific miRNAs is vital to lung development and modulation of the immune system that consequently results in the development of uncontrolled inflammation in the lung. Other studies have found that bacterial challenges also upregulate the expression of specific miRNAs. In this article, we will focus on miRNA involvement in lung development and the possibility that dysregulation and/or reactivation of miRNAs may contribute to lung disease. We will also review the role of miRNAs in the pathogenesis of specific diseases, such as lung cancer, sepsis and smoking-related lung disease.
Brain Behavior and Immunity | 2010
Jennifer M. Curry; Mark L. Hanke; Melissa G. Piper; Michael T. Bailey; Benjamin D. Bringardner; John F. Sheridan; Clay B. Marsh
Social disruption (SDR) is a well-characterized mouse stressor that causes changes in immune cell reactivity in response to inflammatory stimuli. In this study, we found that SDR in the absence of an immune challenge induced pulmonary inflammation and increased pulmonary myeloperoxidase activity. The percentage of neutrophils within the lungs increased 2-fold after social disruption. Monocyte accumulation in the lungs was also significantly increased. In addition, SDR increased the percentage of neutrophils that expressed CD11b, indicating that more neutrophils were in an activated state. In the lungs, we observed an increased level of the inflammatory cytokine, IL-1beta, as well as higher levels of KC/CXCL1, MIP-2/CXCL2, and MCP-1/CCL2, which are chemokines responsible for neutrophil and monocyte recruitment. Furthermore, social disruption led to increased lung expression of the adhesion molecules P-selectin, E-selectin, and ICAM-1, which localize and recruit immune cells. These data support previous findings of an inflammatory environment induced by SDR. We demonstrate that this effect also occurs in the pulmonary milieu and in the absence of an inflammatory stimulus.
PLOS ONE | 2011
Sara McMaken; Matthew Exline; Payal Mehta; Melissa G. Piper; Yijie Wang; Sara N. Fischer; Christie A. Newland; Carrie A. Schrader; Shannon R. Balser; Anasuya Sarkar; Christopher P. Baran; Clay B. Marsh; Charles H. Cook; Gary Phillips; Naeem A. Ali
Background Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. Methodology/Principal Findings We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E.coli injection (IP E.coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1−/− animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1−/− mice after CLP. The survival advantage for TSP-1−/− animals persisted when IP E.coli injections were performed. TSP-1−/− BMMs had increased phagocytic capacity compared to WT. Conclusions TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition.