Noura Ismail
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noura Ismail.
PLOS ONE | 2008
Melissa Piper Hunter; Noura Ismail; Xiaoli Zhang; Baltazar D. Aguda; Eun Joo Lee; Lianbo Yu; Tao Xiao; Jeffrey Schafer; Mei-Ling Ting Lee; Thomas D. Schmittgen; S. Patrick Nana-Sinkam; David Jarjoura; Clay B. Marsh
Background MicroRNAs (miRNA) are small non-coding RNAs that regulate translation of mRNA and protein. Loss or enhanced expression of miRNAs is associated with several diseases, including cancer. However, the identification of circulating miRNA in healthy donors is not well characterized. Microvesicles, also known as exosomes or microparticles, circulate in the peripheral blood and can stimulate cellular signaling. In this study, we hypothesized that under normal healthy conditions, microvesicles contain miRNAs, contributing to biological homeostasis. Methodology/Principal Findings Microvesicles were isolated from the plasma of normal healthy individuals. RNA was isolated from both the microvesicles and matched mononuclear cells and profiled for 420 known mature miRNAs by real-time PCR. Hierarchical clustering of the data sets indicated significant differences in miRNA expression between peripheral blood mononuclear cells (PBMC) and plasma microvesicles. We observed 71 miRNAs co-expressed between microvesicles and PBMC. Notably, we found 33 and 4 significantly differentially expressed miRNAs in the plasma microvesicles and mononuclear cells, respectively. Prediction of the gene targets and associated biological pathways regulated by the detected miRNAs was performed. The majority of the miRNAs expressed in the microvesicles from the blood were predicted to regulate cellular differentiation of blood cells and metabolic pathways. Interestingly, a select few miRNAs were also predicted to be important modulators of immune function. Conclusions This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects. The data generated from this study provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease and will enable the definition of the biological processes regulated by these miRNA.
Blood | 2013
Noura Ismail; Yijie Wang; Duaa Dakhlallah; Leni Moldovan; Kitty Agarwal; Kara Batte; Prexy Shah; Jon Wisler; Timothy D. Eubank; Susheela Tridandapani; Michael E. Paulaitis; Melissa G. Piper; Clay B. Marsh
Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets, while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and explored their role in the differentiation of naive monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including mono cytes, endothelial cells, epithelial cells, and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.
Archive | 2008
Clay B. Marsh; Melissa G. Piper; Noura Ismail
PLOS ONE | 2010
Melissa Piper Hunter; Noura Ismail; Xiaoli Zhang; Baltazar D. Aguda; Eun Joo Lee; Lianbo Yu; Tao Xiao; Jeffrey Schafer; Mei-Ling Ting Lee; Thomas D. Schmittgen; S. Patrick Nana-Sinkam; David Jarjoura; Clay B. Marsh
Blood | 2008
Noura Ismail; Clay B. Marsh; Melissa G. Hunter
Archive | 2017
Clay B. Marsh; Melissa G. Piper; Noura Ismail
american thoracic society international conference | 2012
Yijie Wang; Noura Ismail; Duaa Dakhlallah; Valerie P. Wright; Clay B. Marsh; Melissa G. Piper
Archive | 2010
Noura Ismail
Blood | 2010
Noura Ismail; Kara Batte; Leni Moldovan; Clay B. Marsh; Melissa G. Piper
american thoracic society international conference | 2009
T Karsies; Noura Ismail; M Hall; M Hunter; Clay B. Marsh