Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa H. Wong is active.

Publication


Featured researches published by Melissa H. Wong.


Cancer Research | 2012

Tumor Microenvironment Complexity: Emerging Roles in Cancer Therapy

Melody A. Swartz; Noriho Iida; Edward Roberts; Sabina Sangaletti; Melissa H. Wong; Fiona E. Yull; Lisa M. Coussens; Yves A. DeClerck

The tumor microenvironment (TME) consists of cells, soluble factors, signaling molecules, extracellular matrix, and mechanical cues that can promote neoplastic transformation, support tumor growth and invasion, protect the tumor from host immunity, foster therapeutic resistance, and provide niches for dormant metastases to thrive. An American Association for Cancer Research (AACR) special conference held on November 3-6, 2011, addressed five emerging concepts in our understanding of the TME: its dynamic evolution, how it is educated by tumor cells, pathways of communication between stromal and tumor cells, immunomodulatory roles of the lymphatic system, and contribution of the intestinal microbiota. These discussions raised critical questions on how to include the analysis of the TME in personalized cancer diagnosis and treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Myeloid lineage progenitors give rise to vascular endothelium.

Alexis S. Bailey; Holger Willenbring; Shuguang Jiang; Daniel A. Anderson; David A. Schroeder; Melissa H. Wong; Markus Grompe; William H. Fleming

Despite an important role in vascular development and repair, the origin of endothelial progenitors remains unknown. Accumulating evidence indicates that cells derived from the hematopoietic system participate in angiogenesis. However, the identity and functional role of these cells remain controversial. Here we show that vascular endothelial cells can differentiate from common myeloid progenitors and granulocyte/macrophage progenitors. Endothelial cells derived from transplanted bone marrow-derived myeloid lineage progenitors expressed CD31, von Willebrand factor, and Tie2 but did not express the hematopoietic markers CD45 and F4/80 or the pericyte markers desmin and smooth muscle actin. Lineage tracing analysis in combination with a Tie2-driven Cre/lox reporter system revealed that, in contrast to bone marrow-derived hepatocytes, bone marrow-derived endothelial cells are not the products of cell fusion. The establishment of both hematopoietic and endothelial cell chimerism after parabiosis demonstrates that circulating cells can give rise to vascular endothelium in the absence of acute radiation injury. Our findings indicate that endothelial cells are an intrinsic component of myeloid lineage differentiation and underscore the close functional relationship between the hematopoietic and vascular systems.


Current Opinion in Cell Biology | 1998

Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium

Thaddeus S. Stappenbeck; Melissa H. Wong; Jennifer R. Saam; Indira U. Mysorekar; Jeffrey I. Gordon

The mouse intestinal epithelium undergoes rapid renewal throughout life, thereby requiring continuous coordination of its cellular proliferation, differentiation, and death programs. Recent advances in our understanding of this process have highlighted some of the molecules that regulate renewal and their potential roles in gut neoplasia.


Gastroenterology | 2010

Characterization of the Intestinal Cancer Stem Cell Marker CD166 in the Human and Mouse Gastrointestinal Tract

Trevor Levin; Anne E. Powell; Paige S. Davies; Alain D. Silk; Adria D. Dismuke; Eric C. Anderson; John R. Swain; Melissa H. Wong

BACKGROUND & AIMS CD166 (also called activated leukocyte cell adhesion molecule [ALCAM]) is a marker of colorectal cancer (CRC) stem cells; it is expressed by aggressive tumors. Although the presence of CD166 at the tumor cell surface has been correlated with shortened survival, little is known about its function and expression in normal intestinal epithelia. METHODS We characterized the expression pattern of CD166 in normal intestinal tissue samples from humans and mice using immunohistochemisty, flow cytometry, and quantitative reverse-transcriptase polymerase chain reaction. Human and mouse intestinal tumors were also analyzed. RESULTS CD166 was expressed on the surface of epithelial cells within the stem cell niche and along the length of the intestine; expression was conserved across species. In the small intestine, CD166 was observed on crypt-based Paneth cells and intervening crypt-based columnar cells (putative stem cells). A subset of CD166-positive, crypt-based columnar cells coexpressed the stem cell markers Lgr5, Musashi-1, or Dcamkl-1. CD166 was located in the cytoplasm and at the surface of cells within human CRC tumors. CD166-positive cells were also detected in benign adenomas in mice; rare cells coexpressed CD166 and CD44 or epithelial-specific antigen. CONCLUSIONS CD166 is highly expressed within the endogenous intestinal stem cell niche. CD166-positive cells appear at multiple stages of intestinal carcinoma progression, including benign and metastatic tumors. Further studies should investigate the function of CD166 in stem cells and the stem cell niche, which might have implications for normal intestinal homeostasis. CD166 has potential as a therapeutic target for CRC.


Cancer Cell | 2014

B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas.

Nesrine I. Affara; Brian Ruffell; Terry R. Medler; Andrew J. Gunderson; Magnus Johansson; Sophia Bornstein; Emily K. Bergsland; Martin Steinhoff; Yijin Li; Qian Gong; Yan Ma; Jane F. Wiesen; Melissa H. Wong; Molly Kulesz-Martin; Bryan Irving; Lisa M. Coussens

B cells foster squamous cell carcinoma (SCC) development through deposition of immunoglobulin-containing immune complexes in premalignant tissue and Fcγ receptor-dependent activation of myeloid cells. Because human SCCs of the vulva and head and neck exhibited hallmarks of B cell infiltration, we examined B cell-deficient mice and found reduced support for SCC growth. Although ineffective as a single agent, treatment of mice bearing preexisting SCCs with B cell-depleting αCD20 monoclonal antibodies improved response to platinum- and Taxol-based chemotherapy. Improved chemoresponsiveness was dependent on altered chemokine expression by macrophages that promoted tumor infiltration of activated CD8(+) lymphocytes via CCR5-dependent mechanisms. These data reveal that B cells, and the downstream myeloid-based pathways they regulate, represent tractable targets for anticancer therapy in select tumors.


Gastroenterology | 2013

Isolation and Characterization of Intestinal Stem Cells Based on Surface Marker Combinations and Colony-Formation Assay

Fengchao Wang; David Scoville; Xi C. He; Maxime M. Mahe; Andrew C. Box; John M. Perry; Nicholas R. Smith; Nan Ye Lei; Paige S. Davies; Megan K. Fuller; Jeffrey S. Haug; Melainia McClain; Adam D. Gracz; Sheng Ding; Matthias Stelzner; James C.Y. Dunn; Scott T. Magness; Melissa H. Wong; Martin G. Martin; Michael A. Helmrath; Linheng Li

BACKGROUND & AIMS Identification of intestinal stem cells (ISCs) has relied heavily on the use of transgenic reporters in mice, but this approach is limited by mosaic expression patterns and difficult to directly apply to human tissues. We sought to identify reliable surface markers of ISCs and establish a robust functional assay to characterize ISCs from mouse and human tissues. METHODS We used immunohistochemistry, real-time reverse-transcription polymerase chain reaction, and fluorescence-activated cell sorting (FACS) to analyze intestinal epithelial cells isolated from mouse and human intestinal tissues. We compared different combinations of surface markers among ISCs isolated based on expression of Lgr5-green fluorescent protein. We developed a culture protocol to facilitate the identification of functional ISCs from mice and then tested the assay with human intestinal crypts and putative ISCs. RESULTS CD44(+)CD24(lo)CD166(+) cells, isolated by FACS from mouse small intestine and colon, expressed high levels of stem cell-associated genes. Transit-amplifying cells and progenitor cells were then excluded based on expression of GRP78 or c-Kit. CD44(+)CD24(lo)CD166(+) GRP78(lo/-) putative stem cells from mouse small intestine included Lgr5-GFP(hi) and Lgr5-GFP(med/lo) cells. Incubation of these cells with the GSK inhibitor CHIR99021 and the E-cadherin stabilizer Thiazovivin resulted in colony formation by 25% to 30% of single-sorted ISCs. CONCLUSIONS We developed a culture protocol to identify putative ISCs from mouse and human tissues based on cell surface markers. CD44(+)CD24(lo)CD166(+), GRP78(lo/-), and c-Kit(-) facilitated identification of putative stem cells from the mouse small intestine and colon, respectively. CD44(+)CD24(-/lo)CD166(+) also identified putative human ISCs. These findings will facilitate functional studies of mouse and human ISCs.


Trends in Genetics | 2013

Genetic basis of cell–cell fusion mechanisms

Pablo S. Aguilar; Mary K. Baylies; André Fleissner; Laura Helming; Naokazu Inoue; Benjamin Podbilewicz; Hongmei Wang; Melissa H. Wong

Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

A nomenclature for intestinal in vitro cultures

Matthias Stelzner; Michael A. Helmrath; James C.Y. Dunn; Susan J. Henning; Courtney W. Houchen; Calvin J. Kuo; John P. Lynch; Linheng Li; Scott T. Magness; Martin G. Martin; Melissa H. Wong; Jian Yu

Many advances have been reported in the long-term culture of intestinal mucosal cells in recent years. A significant number of publications have described new culture media, cell formations, and growth patterns. Furthermore, it is now possible to study, e.g., the capabilities of isolated stem cells or the interactions between stem cells and mesenchyme. However, at the moment there is significant variation in the way these structures are described and named. A standardized nomenclature would benefit the ability to communicate and compare findings from different laboratories using the different culture systems. To address this issue, members of the NIH Intestinal Stem Cell Consortium herein propose a systematic nomenclature for in vitro cultures of the small and large intestine. We begin by describing the structures that are generated by preparative steps. We then define and describe structures produced in vitro, specifically: enterosphere, enteroid, reconstituted intestinal organoid, induced intestinal organoid, colonosphere, colonoid, and colonic organoid.


Stem Cells | 2005

Epithelial Stem Cells and Their Niche: There's No Place Like Home

Adnan Z. Rizvi; Melissa H. Wong

Stem cells hold the promise of novel therapy for treating diseases. Unfortunately, the use and study of embryonic stem cells are currently clouded by ethical controversy. Adult stem cells offer a unique alternative in that they may be isolated, studied, or manipulated without harming the donor. Currently, several obstacles for use of adult stem cells as therapy exist. First, the ability to identify most adult stem cells is impeded by lack of stem cell markers. Second, in vitro systems for manipulating adult stem cell populations are often not well defined. Finally, our understanding of how adult stem cells are regulated within their niche is in its infancy. Next to the hematopoietic stem cell, epithelial stem cells are one of the most widely studied stem cell populations. Even so, the diversity between epithelial functions in different organs makes it difficult to determine whether common themes exist in regulating these related stem cells. Although each epithelial stem cell niche possesses unique features to facilitate its specialized functionality, they likely share many common aspects of regulation. The purpose of this review is to compare how the cell signaling influences the stem cell and its niche in rapidly self‐renewing epithelia.


Nature | 2017

Non-equivalence of Wnt and R-spondin ligands during Lgr5 + intestinal stem-cell self-renewal

Kelley S. Yan; Claudia Y. Janda; Junlei Chang; Grace X. Y. Zheng; Kathryn A. Larkin; Vincent C. Luca; Luis A. Chia; Amanda T. Mah; Arnold Han; Jessica M. Terry; Akifumi Ootani; Kelly Roelf; Mark Lee; Jenny Yuan; Xiao Li; Christopher R. Bolen; Julie Wilhelmy; Paige S. Davies; Hiroo Ueno; Richard J. von Furstenberg; Phillip Belgrader; Solongo B. Ziraldo; Heather Ordonez; Susan J. Henning; Melissa H. Wong; Michael Snyder; Irving L. Weissman; Aaron J. W. Hsueh; Tarjei S. Mikkelsen; K. Christopher Garcia

The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium—an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5+ intestinal stem cells (ISCs). R-spondin ligands (RSPO1–RSPO4) engage distinct LGR4–LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5+ ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5+ ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5+ ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction between Wnt and RSPO ligands establishes a molecular precedent for regulation of mammalian stem cells by distinct priming and self-renewal factors, with broad implications for precise control of tissue regeneration.

Collaboration


Dive into the Melissa H. Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey I. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne E. Powell

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge