Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa J. Baumann is active.

Publication


Featured researches published by Melissa J. Baumann.


Philosophical Magazine | 2009

Resonant ultrasound spectroscopy measurement of Young's modulus, shear modulus and Poisson's ratio as a function of porosity for alumina and hydroxyapatite

Fei Ren; Eldon D. Case; A. Q. Morrison; M. Tafesse; Melissa J. Baumann

Modulus–porosity relationships are critical for engineered bone tissue scaffold materials such as hydroxyapatite (HA), where porosity is essential to biological function. Resonant ultrasound spectroscopy (RUS) measurements revealed that the Youngs modulus, E, and shear modulus, G, of both alumina and HA decrease monotonically with increasing volume fraction porosity, P, for 0.06 < P < 0.39 (alumina) and 0.05 < P < 0.51 (HA). Although the elastic moduli of porous materials have been measured by a number of different ultrasonic resonance techniques (of which the RUS technique is one example) and over the last decade the elastic moduli of many solids have been measured by the RUS technique, this study is the first systematic RUS study of porous materials. Comparison of E versus P data for alumina (which has been studied extensively) with literature data from several measurement techniques indicates the RUS technique is effective for modulus–porosity measurements. Another key result is that although the HA specimens included in this study have a unimodal pore size distribution, the details of the decrease in E and G with increasing P agree well with literature data for HA with both unimodal and bimodal pore size distributions. In addition, Poissons ratio exhibits a local minimum in the porosity range of 0.2 < P < 0.25 for both HA and alumina, which may be related to the pore morphology evolution during sintering.


Water Research | 2011

Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: Comparison of Ti, Fe and Mn oxide coated membranes for water quality

Seokjong Byun; Simon H. Davies; Alla Alpatova; Lindsay M. Corneal; Melissa J. Baumann; Volodymyr V. Tarabara; Susan J. Masten

In this study the performance of catalytic membranes in a hybrid ozonation-ceramic membrane filtration system was investigated. The catalytic membranes were produced by coating commercial ceramic ultrafiltration membranes with manganese or iron oxide nanoparticles using a layer-by-layer self-assembly technique. A commercial membrane with a titanium oxide filtration layer was also evaluated. The performance of the coated and uncoated membranes was evaluated using water from a borderline eutrophic lake. The permeate flux and removal of the organic matter was found to depend on the type of the metal oxide present on the membrane surface. The performance of the manganese oxide coated membrane was superior to that of the other membranes tested, showing the fastest recovery in permeate flux when ozone was applied and the greatest reduction in the total organic carbon (TOC) in the permeate. The removal of trihalomethanes (THMs) and haloacetic acids (HAAs) precursors using the membrane coated 20 times with manganese oxide nanoparticles was significantly better than that for the membranes coated with 30 or 40 times with manganese oxide nanoparticles or 40 times with iron oxide nanoparticles.


Journal of The Mechanical Behavior of Biomedical Materials | 2012

Part II: Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials

Xiaofeng Fan; Eldon D. Case; Fei Ren; Yutian Shu; Melissa J. Baumann

Part I of this paper discussed the Weibull modulus m, versus porosity P behavior of brittle materials, including HA. While the Weibull modulus m deals with the scatter in fracture strength data, this paper (Part II) focuses on two additional key mechanical properties of porous materials, namely the average fracture strength , and Youngs modulus E, for P in the interval from P≈ zero to P≈P(G) (the porosity of the unfired compacts). The versus P data for HA from this study and the literature data for alumina, yttria stabilized zirconia (YSZ) and silicon nitride are described well by functions of ϕ, where ϕ=1-P/P(G)= the degree of densification. A similar function of ϕ applies to the versus P behavior of HA from this study and data from the literature for alumina, titanium and YSZ. All of the data analyzed in this study (Part II) are based on partially and fully sintered powder compacts (excluding green powder compacts), thus the /σ(0) versus ϕ and /E(0) versus ϕ relationships may apply only to such specimens.


Journal of Biomedical Materials Research Part A | 2010

Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys

C. Kleemann; R. J. Friederichs; Lars Haubold; H.-J. Scheibe; Thomas Schuelke; C. J. Boehlert; Melissa J. Baumann

Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta-C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2-10 μm thick ta-C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L(C2) during scratch testing. The ta-C coating reduced the wear from 3.5 × 10(-5) mm(3)/Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10(-7) mm(3)/Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin-on-disk testing. The lowest wear factor of 3.9 × 10(-10) mm(3)/Nm was measured using a ta-C coated steel ball running against a ta-C coated and polished Co28Cr6Mo disk. Students t-test found that the ta-C coating had no statistically significant (p < 0.05) effect on OB attachment, when compared with the uncoated control samples. There was no significant difference (p < 0.05) in the Live/Dead assay results in cell death between the ta-C coated Co28Cr6Mo and Ti6Al4V samples and the uncoated controls. Therefore, these ta-C coatings show improved wear and corrosion (Dorner-Reisel et al., Diam Relat Mater 2003;11:823-827; Affato et al., J Biomed Mater Res B Appl Biomater 2000;53:221-226; Dorner-Reisel et al., Surf Coat Tech 2004;177-178:830-837; Kim et al., Diam Relat Mater 2004;14:35-41) performance and excellent in vitro cyto-compatibility, when compared with currently used uncoated Co28Cr6Mo and Ti6Al4V implant materials.


Journal of The Mechanical Behavior of Biomedical Materials | 2013

Weibull modulus and fracture strength of highly porous hydroxyapatite

Xiaofeng Fan; Eldon D. Case; I. Gheorghita; Melissa J. Baumann

Porous hydroxyapatite (HA) is used in a variety of applications including biomedical materials such as engineered bone materials and microbe filters. Despite the utility of the Weibull modulus, m, as a gauge of the mechanical reliability of brittle solids, there have been very few studies of m for porous HA. A recent study of porous HA that included the current authors (Fan, X., Case, E.D., Ren, F., Shu, Y., Baumann, M.J., 2012a. Journal of the Mechanical Behavior of Biomedical Materials. 8, 21-36) showed increases in m for porosity, P, approaching PG, the porosity of the green (unfired) specimen. In this paper, 18 groups of highly porous HA specimens (12 groups fabricated in this study and 6 groups from Fan et al., 2012a) were analyzed with P values from 0.59 to 0.62, where PG=0.62. The partially sintered HA specimens were fractured in biaxial flexure using a ring-on-ring test fixture. The fracture strength decreased monotonically with decreasing sintering temperature, Tsinter, from 4.8MPa for specimens sintered at 1025°C-0.66MPa for specimens sintered at 350°C. However, the Weibull modulus remained surprisingly high, ranging from 6.6 to 15.5. In comparison, for HA specimens with intermediate values of P, from about 0.1-0.55, the Weibull modulus tended to be lower (ranging from about 4 to 11) than the highly porous specimens included in this study.


Journal of Cellular Physiology | 2015

Bisphosphonate treatment of type I diabetic mice prevents early bone loss but accentuates suppression of bone formation

Lindsay M. Coe; Srinivasan Arjun Tekalur; Yutian Shu; Melissa J. Baumann; Laura R. McCabe

Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Previous studies demonstrate that T1‐diabetes decreases osteoblast activity and viability. Bisphosphonate therapy, commonly used to treat osteoporosis, is demonstrated to inhibit osteoclast activity as well as osteoblast apoptosis. Therefore, we examined the effect of weekly alendronate treatments on T1‐diabetes induced osteoblast apoptosis and bone loss. Bone TUNEL assays identified that alendronate therapy prevents the diabetes‐induced osteoblast death observed during early stages of diabetes development. Consistent with this, alendronate treatment for 40 days was able to prevent diabetes‐induced trabecular bone loss. Alendronate was also able to reduce marrow adiposity in both control diabetic mice compared to untreated mice. Mechanical testing indicated that 40 days of alendronate treatment increased bone stiffness but decreased the work required for fracture in T1‐diabetic and alendronate treated mice. Of concern at this later time point, bone formation rate and osteoblast markers, which were already decreased in diabetic mice, were further suppressed in alendronate‐treated diabetic mice. Taken together, our results suggest that short‐term alendronate treatment can prevent T1‐diabetes‐induced bone loss in mice, possibly in part by inhibiting diabetes onset associated osteoblast death, while longer treatment enhanced bone density but at the cost of further suppressing bone formation in diabetic mice. J. Cell. Physiol. 230: 1944–1953, 2015.


Journal of Materials Science | 2012

The effect of indentation-induced microcracks on the elastic modulus of hydroxyapatite

Xiaofeng Fan; Eldon D. Case; Melissa J. Baumann

The presence of microcracks in materials affects a wide range of mechanical properties including elastic modulus, Poisson’s ratio, fracture strength, and fracture toughness. The microcrack-induced reductions of the Young’s modulus, E, and Poisson’s ratio, υ, are functions of the size, geometry, and number density of microcracks. In this study, an array of Vickers indentation-induced microcracks was placed on the surfaces of two hydroxyapatite (HA) specimens with totals of 391 and 513 indentations per specimen. This study tests the validity of theoretical studies of microcrack damage-induced changes in E and υ, where the changes are expressed either by (i) the volumetric crack number density, N and (ii) the crack damage parameter, ε. All elasticity measurements were done via resonant ultrasound spectroscopy. For both the HA specimens included in the study and alumina specimens indented in an earlier study [J Mater Sci 38:1910. doi: 10.1007/BF00595764, 1], E and υ decreased approximately linearly with increasing microcrack damage. The slopes of the E and υ versus N and ε are also computed and compared to the available theoretical models.


Ozone-science & Engineering | 2007

Removal of Escherichia coli after Treatment Using Ozonation-Ultrafiltration with Iron Oxide-Coated Membranes

Bhavana S. Karnik; Simon H. Davies; Melissa J. Baumann; Susan J. Masten

The effect of membrane filtration, ozonation, and combined ozonation-membrane filtration on the removal of Escherichia coli was studied. Commercially available ceramic membranes with a molecular weight cutoff (MWCO) of 5kDa were used as is, and also coated with iron oxide nanoparticles and sintered at 900°C. With membrane filtration and ozonation-membrane filtration using the uncoated membrane, 7 log removal of E. coli was achieved, as compared to 7.5 log removal with ozonation-membrane filtration with the coated membrane. A Live-Dead assay indicated that the mortality of E. coli in the product water was 15%, ∼50%, ∼86%, and >99% with membrane filtration, ozonation, combined ozonation-membrane filtration with the uncoated membrane and the coated membrane, respectively. With the coated membrane, the concentration of assimilated organic carbon (AOC) was reduced by up to 50% more than with the uncoated membrane filtration (with both systems operated using ozone). This indicates that there is a reduced potential for regrowth after treatment using the coated membranes and ozone. Scanning electron micrographs (SEM) of the membrane surface suggest that after filtration there is less detritus on the surface of the coated membrane than on the uncoated membrane. As a result of the inactivation of the E. coli and the lower AOC concentrations observed using combined catalytic ozonation-membrane filtration this process is likely to be very effective to both disinfect the water and control bacterial regrowth in the distribution system.


Journal of Biomechanics | 2013

The effects of damage accumulation on the tensile strength and toughness of compact bovine bone.

Wei Zhang; Srinivasan Arjun Tekalur; Melissa J. Baumann; Laura R. McCabe

Damage accumulation in compact bovine femur subjected to uniaxial tensile loading was examined by strong light illumination effects of microcracking. Imaging was done using a high-speed camera capturing image at 200 to 1500FPS. The tensile tests were performed in a multipurpose tensile testing system with cross-head speeds ranging from 0.5 to 10mm/min which leads to strain rates of 0.0001 to 0.0012s(-1) (physiologically relevant to walking and running Hansen et al., 2008). The post-failure images were then examined in a scanning electron microscopy (SEM) and effects of microstructure, strain rate, and orientation were evaluated. Correlation of the high-speed images with stress-strain curves indicated that optically visible microcracks were most likely initiated at yielding, and the specimens with dispersed microcracks exhibited a higher energy-absorption capacity compared to the specimens with coalesced local cracks. It was found that damage accumulation negatively correlates to strain rate and that transverse specimens exhibited a different failure pattern compared to the longitudinal specimens. Strain hardening and softening were found in the longitudinal and transverse specimens respectively. The microcracking in the transverse specimens instantly increased to peak after yielding compared to the gradual growth until failure in the longitudinal specimens. The average Youngs modulus (21.5GPa) and ultimate stress (93.5MPa) of the specimens loaded in the longitudinal direction were more than twice that of the specimens (10.9GPa and 36.2MPa respectively) loaded in the transverse direction. The current technique has shown potential in relating damage accumulation real time in bone samples subjected to tensile loading condition. This information will be helpful in relating the role of micro damage accumulation in initiating failure and/or remodeling in bone.


Materials Science and Engineering: C | 2014

Surface microcracks signal osteoblasts to regulate alignment and bone formation.

Yutian Shu; Melissa J. Baumann; Eldon D. Case; Regina Irwin; Sarah E. Meyer; Craig S. Pearson; Laura R. McCabe

Microcracks are present in bone and can result from fatigue damage due to repeated, cyclically applied stresses. From a mechanical point, microcracks can dissipate strain energy at the advancing tip of a crack to improve overall bone toughness. Physiologically, microcracks are thought to trigger bone remodeling. Here, we examine the effect of microcracks specifically on osteoblasts, which are bone-forming cells, by comparing cell responses on microcracked versus non-microcracked hydroxyapatite (HA) specimens. Osteoblast attachment was found to be greater on microcracked HA specimens (p<0.05). More importantly, we identified the preferential alignment of osteoblasts in the direction of the microcracks on HA. Cells also displayed a preferential attachment that was 75 to 90 μm away from the microcrack indent. After 21 days of culture, osteoblast maturation was notably enhanced on the HA with microcracks, as indicated by increased alkaline phosphatase activity and gene expression. Furthermore, examination of bone deposition by confocal laser scanning microscopy indicated preferential mineralization at microcrack indentation sites. Dissolution studies indicate that the microcracks increase calcium release, which could contribute to osteoblast responses. Our findings suggest that microcracks signal osteoblast attachment and bone formation/healing.

Collaboration


Dive into the Melissa J. Baumann's collaboration.

Top Co-Authors

Avatar

Simon H. Davies

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eldon D. Case

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Laura R. McCabe

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. O. Smith

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Ren

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Seokjong Byun

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge