Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volodymyr V. Tarabara is active.

Publication


Featured researches published by Volodymyr V. Tarabara.


Journal of Colloid and Interface Science | 2008

Pore blocking mechanisms during early stages of membrane fouling by colloids

Fulin Wang; Volodymyr V. Tarabara

A method based on a simple linear regression fitting was proposed and used to determine the type, the chronological sequence, and the relative importance of individual fouling mechanisms in experiments on the dead-end filtration of colloidal suspensions with membranes ranging from loose ultrafiltration (UF) to nanofiltration (NF) to non-porous reverse osmosis (RO). For all membranes, flux decline was consistent with one or more pore blocking mechanisms during the earlier stages and with the cake filtration mechanism during the later stages of filtration. For ultrafiltration membranes, pore blocking was identified as the largest contributor to the observed flux decline. The chronological sequence of blocking mechanisms was interpreted to depend on the size distribution and surface density of membrane pores. For salt-rejecting membranes, the flux decline during the earlier stages of filtration was attributed to either intermediate blocking of relatively more permeable areas of the membrane skin, or to the cake filtration in its early transient stages, or a combination of these two mechanisms. The findings emphasize the practical importance of the clear identification of, and differentiation between mechanisms of pore blocking and cake formation as determining the potential for the irreversible fouling of membranes and the efficiency of membrane cleaning.


Water Research | 2010

Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions

Alla Alpatova; Wenqian Shan; Pavel Babica; Brad L. Upham; Adam R. Rogensues; Susan J. Masten; Edward Drown; Amar K. Mohanty; Evangelyn C. Alocilja; Volodymyr V. Tarabara

As the range of applications for carbon nanotubes (CNTs) rapidly expands, understanding the effect of CNTs on prokaryotic and eukaryotic cell systems has become an important research priority, especially in light of recent reports of the facile dispersion of CNTs in a variety of aqueous systems including natural water. In this study, single-walled carbon nanotubes (SWCNTs) were dispersed in water using a range of natural (gum arabic, amylose, Suwannee River natural organic matter) and synthetic (polyvinyl pyrrolidone, Triton X-100) dispersing agents (dispersants) that attach to the CNT surface non-covalently via different physiosorption mechanisms. The charge and the average effective hydrodynamic diameter of suspended SWCNTs as well as the concentration of exfoliated SWCNTs in the dispersion were found to remain relatively stable over a period of 4 weeks. The cytotoxicity of suspended SWCNTs was assessed as a function of dispersant type and exposure time (up to 48 h) using general viability bioassay with Escherichia coli and using neutral red dye uptake (NDU) bioassay with WB-F344 rat liver epithelia cells. In the E. coli viability bioassays, three types of growth media with different organic loadings and salt contents were evaluated. When the dispersant itself was non-toxic, no losses of E. coli and WB-F344 viability were observed. The cell viability was affected only by SWCNTs dispersed using Triton X-100, which was cytotoxic in SWCNT-free (control) solution. The epigenetic toxicity of dispersed CNTs was evaluated using gap junction intercellular communication (GJIC) bioassay applied to WB-F344 rat liver epithelial cells. With all SWCNT suspensions except those where SWCNTs were dispersed using Triton X-100 (wherein GJIC could not be measured because the sample was cytotoxic), no inhibition of GJIC in the presence of SWCNTs was observed. These results suggest a strong dependence of the toxicity of SWCNT suspensions on the toxicity of the dispersant and point to the potential of non-covalent functionalization with non-toxic dispersants as a method for the preparation of stable aqueous suspensions of biocompatible CNTs.


Water Research | 2013

Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes

Christopher A. Crock; Adam R. Rogensues; Wenqian Shan; Volodymyr V. Tarabara

Phase inversion of polymer casting mixtures filled with hierarchical functional nanostructures is proposed as a synthetic route for the design of multifunctional membranes. The study tested the hypothesis that by regulating the relative content of components representing different levels in the nanofiller hierarchy, the structure and additional functions of such membranes could be controlled separately. Exfoliated graphite nanoplatelets (xGnPs) decorated by Au nanoparticles (Au NPs), used as a model hierarchical nanofiller, were added to the casting mixture of polysulfone, N-Methyl-2-pyrrolidone and polyethylene glycol prior to forming the membrane by phase inversion. The resulting porous asymmetric nanocomposites were shown to be permselective and catalytically active ultrafiltration membranes that were more resistant to compaction, more permeable than xGnP-free membranes and at least as selective. By designing membrane compositions with different relative amounts of Au-decorated xGnPs and Au-free xGnPs, the structure (controlled by the loading of xGnPs) and catalytic activity (controlled by the loading of Au NPs) could be controlled largely independently.


Water Research | 2011

Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: Comparison of Ti, Fe and Mn oxide coated membranes for water quality

Seokjong Byun; Simon H. Davies; Alla Alpatova; Lindsay M. Corneal; Melissa J. Baumann; Volodymyr V. Tarabara; Susan J. Masten

In this study the performance of catalytic membranes in a hybrid ozonation-ceramic membrane filtration system was investigated. The catalytic membranes were produced by coating commercial ceramic ultrafiltration membranes with manganese or iron oxide nanoparticles using a layer-by-layer self-assembly technique. A commercial membrane with a titanium oxide filtration layer was also evaluated. The performance of the coated and uncoated membranes was evaluated using water from a borderline eutrophic lake. The permeate flux and removal of the organic matter was found to depend on the type of the metal oxide present on the membrane surface. The performance of the manganese oxide coated membrane was superior to that of the other membranes tested, showing the fastest recovery in permeate flux when ozone was applied and the greatest reduction in the total organic carbon (TOC) in the permeate. The removal of trihalomethanes (THMs) and haloacetic acids (HAAs) precursors using the membrane coated 20 times with manganese oxide nanoparticles was significantly better than that for the membranes coated with 30 or 40 times with manganese oxide nanoparticles or 40 times with iron oxide nanoparticles.


Journal of Membrane Science | 2013

Oil droplet behavior at a pore entrance in the presence of crossflow: Implications for microfiltration of oil-water dispersions

Tohid Darvishzadeh; Volodymyr V. Tarabara; Nikolai V. Priezjev

Abstract The behavior of an oil droplet pinned at the entrance of a micropore and subject to crossflow-induced shear is investigated numerically by solving the Navier–Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure required to force the droplet into the pore is in excellent agreement with a theoretical prediction based on the Young–Laplace equation. With increasing shear rate, the critical pressure of permeation increases, and at sufficiently high shear rates the oil droplet breaks up into two segments. The results of numerical simulations indicate that droplet breakup at the pore entrance is facilitated at lower values of the surface tension coefficient, higher oil-to-water viscosity ratio and larger droplet size but is insensitive to the value of the contact angle. Using simple force and torque balance arguments, an estimate for the increase in critical pressure due to crossflow and the breakup capillary number is obtained and validated for different viscosity ratios, surface tension coefficients, contact angles, and drop-to-pore size ratios.


Nanotechnology Applications for Clean Water | 2009

Multifunctional Nanomaterial-Enabled Membranes for Water Treatment

Volodymyr V. Tarabara

The recent progress in the synthesis and characterization of nanomaterials has provided new methods and building blocks for the design of separation membranes. Of especial interest are functional nanoparticles that can be used to develop membranes with additional nanoparticle-based functionalities. In this chapter, recent research on the development of nanostructured multifunctional membranes is overviewed first. Two specific examples, (i) a porous polymer-metal nanocomposite membrane with biocidal properties, and (ii) a ceramic membrane with a “self-cleaning” catalytic surface, are then considered in more detail highlighting, respectively, two important issues pertaining to multifunctional membranes. These are (i) preparation of membranes with embedded functional nanoparticles, and (ii) coupling between membrane transport and reactivity. Both examples feature nanotechnology-based approaches to the mitigation of membrane fouling, a long-standing problem that limits the efficiency of membrane-based water treatment. A brief discussion of potential future directions in this novel and dynamically developing field of research concludes the chapter.


Environmental Engineering Science | 2002

Constant Transmembrane Pressure vs. Constant Permeate Flux: Effect of Particle Size on Crossflow Membrane Filtration

Volodymyr V. Tarabara; Rik M. Hovinga; Mark R. Wiesner

A series of membrane filtration experiments was carried out in a crossflow flat slit geometry to study permeate flux dependence on particle size and operational mode. Dilute monodisperse suspensions of polystyrene particles 20, 50, 100, and 680 nm in diameter were filtered in both constant permeate flux (CF) and constant transmembrane pressure (CP) crossflow regimes using laboratory membrane cell with a known flow configuration. In addition to particle size, other controlled parameters included temperature, crossflow velocity, bulk suspension concentration, transmembrane pressure, membrane hydraulic resistance, and surface chemistry of particles and the membrane. Obtained experimental specific permeate flux profiles were used to evaluate the transient permeate flux model by Sethi and Wiesner. The extended model was found to significantly overpredict permeate flux for medium-size particles (50–100 nm) while providing reasonable agreement with experimental data for small (20 nm) and big (680 nm) particles. ...


Chemical Engineering Science | 2003

Computational fluid dynamics modeling of the flow in a laboratory membrane filtration cell operated at low recoveries

Volodymyr V. Tarabara; Mark R. Wiesner

Abstract Scaled-down models of industrial filtration units are often used in laboratory studies of membrane processes. Knowledge of the flow field and shear stresses at the membrane surface is vital for the accurate interpretation of bench scale experiments. In this paper, we present results of computational fluid dynamics modeling of the flow within the SEPA CF flat sheet membrane filtration cell operated at low recoveries. The problem was formulated as the steady-state isothermal laminar flow of incompressible Newtonian fluid. Pressure, velocity, and shear stress distributions were computed with 1 mm resolution for different average inlet velocities. Flow was found to be unidirectional over most of the channel area with exception of the corners of the channel. Stagnation areas in dead ends of inlet and outlet tubes and in the channel areas behind duct entries as well as local regions of high shear in duct-channel transition areas were observed. The relation between the highest shear rate created in this geometry and the average inlet velocity is given.


Volume 1C, Symposia: Fundamental Issues and Perspectives in Fluid Mechanics; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Gas-Solid Flows: Dedicated to the Memory of Professor Clayton T. Crowe; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes | 2014

CFD Study of Hydrodynamics and Separation Performance of a Novel Crossflow Filtration Hydrocyclone (CFFH)

Abdul Motin; Volodymyr V. Tarabara; André Bénard

This research addresses various hydrodynamic aspects and the separation performance of a novel cross-flow filtration hydrocyclone (CFFH) using computational fluid dynamics. A CFFH is a device that combines the desirable attributes of a cross-flow filter and a vortex separator into one unit to separate oil from water. The velocity and pressure fields within the CFFH are estimated by numerically solving the filtered Navier-Stokes equations (by using a Large Eddy Simulation (LES) approach). The Lagrangian approach is employed for investigating the trajectories of dispersed droplets based on a stochastic tracking method called the Discrete Phase Model (DPM). The mixture theory with the Algebraic Slip Model (ASM) is also used to compute the dispersed phase fluid mechanics and for comparing with results obtained from the DPM. In addition, a comparison between the statistically steady state results obtained by the LES with the Wall Adaptive Local Eddy-Viscosity (WALE) subgrid scale model and the Reynolds Average Navier-Stokes (RANS) closed with the Reynolds Stress Model (RSM) is performed for evaluating their capabilities with regards to the flow field within the CFFH and the impact of the filter medium. Effects of the Reynolds number, the permeability of the porous filter, and droplet size on the internal hydrodynamics and separation performance of the CFFH are investigated. Results indicate that for low feed concentration of the dispersed phase, separation efficiency obtained based on multiphase and discrete phase simulations is almost the same. Higher Reynolds number flow simulations exhibit an unstable core and thereby numerous recirculation zones in the flow field are observed. Improved separation efficiency is observed at a lower Reynolds number and for a lower permeability of the porous filter.Copyright


ASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013 | 2013

SIMULATIONS AND PERFORMANCE OF THE CROSSFLOW FILTRATION HYDROCYCLONE (CFFH) FOR OIL-WATER SEPARATION

Abdul Motin; Mark Gaustad; Volodymyr V. Tarabara; André Bénard

A critical aspect of operating an oil well consists of separating oil from the water that is jointly produced. This paper describes modeling of a crossflow filtration hydrocyclone (CFFH), a device that combines desirable attributes of a crossflow filter and a vortex separator into one unit to separate oil from produced water. A porous media is incorporated around the crossflow outlet region of the cylindrical CFFH so as to achieve the desired separation efficiency. The main purpose of this work is to predict the fluid dynamic behavior of a particular CFFH design and its separation efficacy based on 3D computational fluid dynamics (CFD) simulations. The velocity field in the fluid phase is obtained using a Reynolds Stress Model (RSM) for closing the Reynolds Average Navier. Stokes (RANS) equation. The Lagrangian Discrete Phase Model (DPM) is used to investigate the trajectories of particles mimicking oil droplets and grade efficiency of the CFFH. The effect of the Reynolds and the Stokes numbers on the grade efficiency and particle residence time is studied. The effective length of the porous media and the vortex strength for different operating conditions is also investigated. Results indicate that the separation efficiency is significantly influenced by the porous media. Hydrocyclones with an aspect ratio greater than 4.0 exhibit lower grade efficiency due to a weaker swirl. NOMENCLATURE

Collaboration


Dive into the Volodymyr V. Tarabara's collaboration.

Top Co-Authors

Avatar

André Bénard

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenqian Shan

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon H. Davies

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdul Motin

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge