Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa J. Blacketer is active.

Publication


Featured researches published by Melissa J. Blacketer.


Molecular and Cellular Biology | 1993

Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A.

Melissa J. Blacketer; Carla M. Koehler; S G Coats; Alan M. Myers; P Madaule

The Saccharomyces cerevisiae genes ELM1, ELM2, and ELM3 were identified on the basis of the phenotype of constitutive cell elongation. Mutations in any of these genes cause a dimorphic transition to a pseudohyphal growth state characterized by formation of expanded, branched chains of elongated cells. Furthermore, elm1, elm2, and elm3 mutations cause cells to grow invasively under the surface of agar medium. S. cerevisiae is known to be a dimorphic organism that grows either as a unicellular yeast or as filamentous cells termed pseudohyphae; although the yeast-like form usually prevails, pseudohyphal growth may occur during conditions of nitrogen starvation. The morphologic and physiological properties caused by elm1, elm2, and elm3 mutations closely mimic pseudohyphal growth occurring in conditions of nitrogen starvation. Therefore, we propose that absence of ELM1, ELM2, or ELM3 function causes constitutive execution of the pseudohyphal differentiation pathway that occurs normally in conditions of nitrogen starvation. Supporting this hypothesis, heterozygosity at the ELM2 or ELM3 locus significantly stimulated the ability to form pseudohyphae in response to nitrogen starvation. ELM1 was isolated and shown to code for a novel protein kinase homolog. Gene dosage experiments also showed that pseudohyphal differentiation in response to nitrogen starvation is dependent on the product of CDC55, a putative B regulatory subunit of protein phosphatase 2A, and a synthetic phenotype was observed in elm1 cdc55 double mutants. Thus, protein phosphorylation is likely to regulate differentiation into the pseudohyphal state.


Molecular and Cellular Biology | 1999

Control of Saccharomyces cerevisiae Filamentous Growth by Cyclin-Dependent Kinase Cdc28

Nicholas P. Edgington; Melissa J. Blacketer; Tracie A. Bierwagen; Alan M. Myers

ABSTRACT The ascomycete Saccharomyces cerevisiae exhibits alternative vegetative growth states referred to as the yeast form and the filamentous form, and it switches between the two morphologies depending on specific environmental signals. To identify molecules involved in control of morphologic differentiation, this study characterized mutant S. cerevisiae strains that exhibit filamentous growth in the absence of the normal external signals. A specific amino acid substitution in the cyclin-dependent protein kinase Cdc28 was found to cause constitutive expression of most filamentous growth characteristics. These effects include specifically modified cell polarity characteristics in addition to the defined shape and division cycle alterations typical of the filamentous form. Several other mutations affecting Cdc28 function also had specific effects on filamentous growth. Constitutive filamentous growth resulting from deletion of the protein kinase Elm1 was prevented by modification of Cdc28 such that it could not be phosphorylated on tyrosine residue 19. In addition, various mutations affecting Hsl1 or Swe1, known or presumed components of a protein kinase cascade that mediates Cdc28 phosphorylation on Y19, either prevented or enhanced filamentous growth. The data suggest that a protein kinase cascade involving Elm1, Hsl1, and Swe1 can modulate Cdc28 activity and that Cdc28 in turn exerts global effects that cause filamentous growth.


Journal of Cellular Biochemistry | 2004

Chromator, a novel and essential chromodomain protein interacts directly with the putative spindle matrix protein skeletor

Uttama Rath; Dong Wang; Yun Ding; Yingzhi Xu; Hongying Qi; Melissa J. Blacketer; Jack Girton; Jørgen Johansen; Kristen M. Johansen

We have used a yeast two‐hybrid interaction assay to identify Chromator, a novel chromodomain containing protein that interacts directly with the putative spindle matrix protein Skeletor. Immunocytochemistry demonstrated that Chromator and Skeletor show extensive co‐localization throughout the cell cycle. During interphase Chromator is localized on chromosomes to interband chromatin regions in a pattern that overlaps that of Skeletor. However, during mitosis both Chromator and Skeletor detach from the chromosomes and align together in a spindle‐like structure. Deletion construct analysis in S2 cells showed that the COOH‐terminal half of Chromator without the chromodomain was sufficient for both nuclear as well as spindle localization. Analysis of P‐element mutations in the Chromator locus shows that Chromator is an essential protein. Furthermore, RNAi depletion of Chromator in S2 cells leads to abnormal microtubule spindle morphology and to chromosome segregation defects. These findings suggest that Chromator is a nuclear protein that plays a role in proper spindle dynamics during mitosis.


Journal of Cellular Biochemistry | 2005

EAST interacts with Megator and localizes to the putative spindle matrix during mitosis in Drosophila

Hongying Qi; Uttama Rath; Yun Ding; Yun Ji; Melissa J. Blacketer; Jack Girton; Jørgen Johansen; Kristen M. Johansen

We have used immunocytochemistry to demonstrate that the EAST protein in Drosophila, which forms an expandable nuclear endoskeleton at interphase, redistributes during mitosis to colocalize with the spindle matrix proteins, Megator and Skeletor. EAST and Megator also colocalize to the intranuclear space surrounding the chromosomes at interphase. EAST is a novel protein that does not have any previously characterized motifs or functional domains. However, we show by immunoprecipitation experiments that EAST is likely to molecularly interact with Megator which has a large NH2‐terminal coiled‐coil domain with the capacity for self assembly. On the basis of these findings, we propose that Megator and EAST interact to form a nuclear endoskeleton and as well are important components of the putative spindle matrix complex during mitosis.


Journal of Biological Chemistry | 2014

Human Heterochromatin Protein 1α Promotes Nucleosome Associations That Drive Chromatin Condensation

Abdelhamid M. Azzaz; Michael W. Vitalini; Andrew S. Thomas; Jason P. Price; Melissa J. Blacketer; Diane E. Cryderman; Luka N. Zirbel; Christopher L. Woodcock; Adrian H. Elcock; Lori L. Wallrath; Michael A. Shogren-Knaak

Background: Heterochromatin is enriched for di- and tri-methylated lysine 9 of histone H3 (H3K9Me2/3) and heterochromatin protein 1 (HP1Hsα .). Results: The association of HP1Hsα with H3K9Me3-containing nucleosome arrays facilitated array compaction and cross-array interactions. Conclusion: HP1Hsα association caused intra- and inter-array associations, leading to chromatin condensation and looping. Significance: An understanding of HP1Hsα-nucleosome interactions provides insights on the structure and functions of heterochromatin. HP1Hsα-containing heterochromatin is located near centric regions of chromosomes and regulates DNA-mediated processes such as DNA repair and transcription. The higher-order structure of heterochromatin contributes to this regulation, yet the structure of heterochromatin is not well understood. We took a multidisciplinary approach to determine how HP1Hsα-nucleosome interactions contribute to the structure of heterochromatin. We show that HP1Hsα preferentially binds histone H3K9Me3-containing nucleosomal arrays in favor of non-methylated nucleosomal arrays and that nonspecific DNA interactions and pre-existing chromatin compaction promote binding. The chromo and chromo shadow domains of HP1Hsα play an essential role in HP1Hsα-nucleosome interactions, whereas the hinge region appears to have a less significant role. Electron microscopy of HP1Hsα-associated nucleosomal arrays showed that HP1Hsα caused nucleosome associations within an array, facilitating chromatin condensation. Differential sedimentation of HP1Hsα-associated nucleosomal arrays showed that HP1Hsα promotes interactions between arrays. These strand-to-strand interactions are supported by in vivo studies where tethering the Drosophila homologue HP1a to specific sites promotes interactions with distant chromosomal sites. Our findings demonstrate that HP1Hsα-nucleosome interactions cause chromatin condensation, a process that regulates many chromosome events.


Journal of Biological Chemistry | 2010

Nucleosome Interactions and Stability in an Ordered Nucleosome Array Model System

Melissa J. Blacketer; Sarah J. Feely; Michael Shogren-Knaak

Although it is well established that the majority of eukaryotic DNA is sequestered as nucleosomes, the higher-order structure resulting from nucleosome interactions as well as the dynamics of nucleosome stability are not as well understood. To characterize the structural and functional contribution of individual nucleosomal sites, we have developed a chromatin model system containing up to four nucleosomes, where the array composition, saturation, and length can be varied via the ordered ligation of distinct mononucleosomes. Using this system we find that the ligated tetranucleosomal arrays undergo intra-array compaction. However, this compaction is less extensive than for longer arrays and is histone H4 tail-independent, suggesting that well ordered stretches of four or fewer nucleosomes do not fully compact to the 30-nm fiber. Like longer arrays, the tetranucleosomal arrays exhibit cooperative self-association to form species composed of many copies of the array. This propensity for self-association decreases when the fraction of nucleosomes lacking H4 tails is systematically increased. However, even tetranucleosomal arrays with only two octamers possessing H4 tails recapitulate most of the inter-array self-association. Varying array length shows that systems as short as dinucleosomes demonstrate significant self-association, confirming that relatively few determinants are required for inter-array interactions and suggesting that in vivo multiple interactions of short runs of nucleosomes might contribute to complex fiber-fiber interactions. Additionally, we find that the stability of nucleosomes toward octamer loss increases with array length and saturation, suggesting that in vivo stretches of ordered, saturated nucleosomes could serve to protect these regions from histone ejection.


Yeast | 2003

Assembly interdependence among the S. cerevisiae bud neck ring proteins Elm1p, Hsl1p and Cdc12p

Courtney Lynn Thomas; Melissa J. Blacketer; Nicholas P. Edgington; Alan M. Myers

In Saccharomyces cerevisiae, a complex comprising more than 20 different polypeptides assembles in a ring at the neck between the mother cell and the bud. This complex functions to coordinate cell morphology with cell division. Relatively little is known about this control system, including the physical relationships between the components of the neck ring. This study addressed the assembly interactions of three components of the ring, specifically the protein kinases Elm1p and Hsl1p and the septin Cdc12p. Specific amino acid substitutions in each of these three proteins were identified that either cause or suppress a characteristic phenotype of abnormally elongated cells and delay in the G2–M transition. Each protein was fused to green fluorescent protein, and its ability to localize at the neck was monitored in vivo in cells of various genotypes. Localization of Hsl1p to the neck requires Elm1p function. Elm1p localized normally in the absence of Hsl1p, although a specific point mutation in Hsl1p clearly affected Elm1p localization. The cdc12‐122 mutation prevented assembly of Elm1p or Hsl1p into the neck ring. Normal assembly of Cdc12p at the neck was dependent upon Elm1p and also, to a smaller extent, on Hsl1p. Ectopic localization of Cdc12p at the bud tip was observed frequently in elm1 mutants and also, to a lesser extent, in hsl1 mutants. Thus, Elm1p is a key factor in the assembly and/or maintenance of Hsl1p, as well as at least one septin, into the bud neck ring. Copyright


Molecular and Cellular Biology | 1994

The Saccharomyces cerevisiae mutation elm4-1 facilitates pseudohyphal differentiation and interacts with a deficiency in phosphoribosylpyrophosphate synthase activity to cause constitutive pseudohyphal growth.

Melissa J. Blacketer; P Madaule; Alan M. Myers

Saccharomyces cerevisiae mutant E124 was selected in a visual screen based on elongated cell shape. Genetic analysis showed that E124 contains two separate mutations, pps1-1 and elm4-1, each causing a distinct phenotype inherited as a single-gene trait. In rich medium, pps1-1 by itself causes increased doubling time but does not affect cell shape, whereas elm4-1 results in a moderate cell elongation phenotype but does not affect growth rate. Reconstructed elm4-1 pps1-1 double mutants display a synthetic phenotype in rich medium including extreme cell elongation and delayed cell separation, both characteristics of pseudohyphal differentiation. The elm4-1 mutation was shown to act as a dominant factor that potentiates pseudohyphal differentiation in response to general nitrogen starvation in a genetic background in which pseudohyphal growth normally does not occur. Thus, elm4-1 allows recognition of, or response to, a pseudohyphal differentiation signal that results from nitrogen limitation. PPS1 was isolated and shown to be a previously undescribed gene coding for a protein similar in amino acid sequence to phosphoribosylpyrophosphate synthase, a rate-limiting enzyme in the biosynthesis of nucleotides, histidine, and tryptophan. Thus, the pps1-1 mutation may generate a nitrogen limitation signal, which when coupled with elm4-1 results in pseudohyphal growth even in rich medium.


Analytical Biochemistry | 2014

Nucleosome acetylation sequencing to study the establishment of chromatin acetylation

Chitvan Mittal; Melissa J. Blacketer; Michael A. Shogren-Knaak

The establishment of posttranslational chromatin modifications is a major mechanism for regulating how genomic DNA is utilized. However, current in vitro chromatin assays do not monitor histone modifications at individual nucleosomes. Here we describe a strategy, nucleosome acetylation sequencing, that allows us to read the amount of modification at each nucleosome. In this approach, a bead-bound trinucleosome substrate is enzymatically acetylated with radiolabeled acetyl CoA by the SAGA complex from Saccharomyces cerevisae. The product is digested by restriction enzymes that cut at unique sites between the nucleosomes and then counted to quantify the extent of acetylation at each nucleosomal site. We find that we can sensitively, specifically, and reproducibly follow enzyme-mediated nucleosome acetylation. Applying this strategy, when acetylation proceeds extensively, its distribution across nucleosomes is relatively uniform. However, when substrates are used that contain nucleosomes mutated at the major sites of SAGA-mediated acetylation, or that are studied under initial rate conditions, changes in the acetylation distribution can be observed. Nucleosome acetylation sequencing should be applicable to analyzing a wide range of modifications. Additionally, because our trinucleosomes synthesis strategy is highly modular and efficient, it can be used to generate nucleosomal systems in which nucleosome composition differs across the array.


Analytical Biochemistry | 2017

Solid-phase synthesis of highly repetitive chromatin assembly templates

Melissa J. Blacketer; Margaret Gannon; Isaac A. Young; Michael A. Shogren-Knaak

DNA templates for assembling chromatin model systems typically consist of numerous repeats of nucleosome positioning sequences, making their synthesis challenging. Here we describe a solid-phase strategy for generating such templates using sequential enzymatic ligation of DNA monomers. Using single nucleosome site monomers, we can either generate a twelve-nucleosome site target, or systematically access intermediate-sized templates. Using twelve nucleosome positioning site monomers, longer templates can be generated. Our synthesized templates assemble into well-defined chromatin model systems, demonstrating the utility of our solid-phase approach. Moreover, our strategy should be more widely applicable to generating other DNAs containing highly repetitive DNA sequences.

Collaboration


Dive into the Melissa J. Blacketer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P Madaule

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Ding

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Dong Wang

Iowa State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge