Melissa Olsen-Rasmussen
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melissa Olsen-Rasmussen.
Emerging Infectious Diseases | 2011
Aleisha R. Reimer; Gary Van Domselaar; Steven Stroika; Matthew Walker; Heather Kent; Cheryl L. Tarr; Deborah F. Talkington; Lori A. Rowe; Melissa Olsen-Rasmussen; Michael Frace; Scott Sammons; Georges Dahourou; Jacques Boncy; Anthony M. Smith; Philip Mabon; Aaron Petkau; Morag Graham; Matthew W. Gilmour; Peter Gerner-Smidt
A strain from Haiti shares genetic ancestry with those from Asia and Africa.
Antimicrobial Agents and Chemotherapy | 2010
Wenming Zhu; Patrick R. Murray; W. Charles Huskins; John A. Jernigan; Lawrence McDonald; Nancye C. Clark; Karen F. Anderson; Linda K. McDougal; Jeff Hageman; Melissa Olsen-Rasmussen; Mike Frace; George Alangaden; Carol E. Chenoweth; Marcus J. Zervos; Barbara Robinson-Dunn; Paul C. Schreckenberger; L. Barth Reller; James T. Rudrik; Jean B. Patel
ABSTRACT Of the 9 vancomycin-resistant Staphylococcus aureus (VRSA) cases reported to date in the literature, 7 occurred in Michigan. In 5 of the 7 Michigan VRSA cases, an Inc18-like vanA plasmid was identified in the VRSA isolate and/or an associated vancomycin-resistant Enterococcus (VRE) isolate from the same patient. This plasmid may play a critical role in the emergence of VRSA. We studied the geographical distribution of the plasmid by testing 1,641 VRE isolates from three separate collections by PCR for plasmid-specific genes traA, repR, and vanA. Isolates from one collection (phase 2) were recovered from surveillance cultures collected in 17 hospitals in 13 states. All VRE isolates from 2 Michigan institutions (n = 386) and between 60 and 70 VRE isolates (n = 883) from the other hospitals were tested. Fifteen VRE isolates (3.9%) from Michigan were positive for an Inc18-like vanA plasmid (9 E. faecalis [12.5%], 3 E. faecium [1.0%], 2 E. avium, and 1 E. raffinosus). Six VRE isolates (0.6%) from outside Michigan were positive (3 E. faecalis [2.7%] and 3 E. faecium [0.4%]). Of all E. faecalis isolates tested, 6.0% were positive for the plasmid, compared to 0.6% for E. faecium and 3.0% for other spp. Fourteen of the 15 plasmid-positive isolates from Michigan had the same Tn1546 insertion site location as the VRSA-associated Inc18-like plasmid, whereas 5 of 6 plasmid-positive isolates from outside Michigan differed in this characteristic. Most plasmid-positive E. faecalis isolates demonstrated diverse patterns by PFGE, with the exception of three pairs with indistinguishable patterns, suggesting that the plasmid is mobile in nature. Although VRE isolates with the VRSA-associated Inc18-like vanA plasmid were more common in Michigan, they remain rare. Periodic surveillance of VRE isolates for the plasmid may be useful in predicting the occurrence of VRSA.
Journal of Bacteriology | 2010
Natalia A. Kozak; Meghan Buss; Claressa E. Lucas; Michael Frace; Dhwani Govil; Tatiana Travis; Melissa Olsen-Rasmussen; Robert F. Benson; Barry S. Fields
Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.
PLOS ONE | 2009
Ginny L. Emerson; Yu Li; Michael Frace; Melissa Olsen-Rasmussen; Marina L. Khristova; Dhwani Govil; Scott Sammons; Russell L. Regnery; Kevin L. Karem; Inger K. Damon; Darin S. Carroll
The data presented herein support the North American orthopoxviruses (NA OPXV) in a sister relationship to all other currently described Orthopoxvirus (OPXV) species. This phylogenetic analysis reaffirms the identification of the NA OPXV as close relatives of “Old World” (Eurasian and African) OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. The natural reservoir host(s) for many of the described OPXV species remains unknown although a clear virus-host association exists between the genus OPXV and several mammalian taxa. The hypothesized host associations and the deep divergence of the OPXV/NA OPXV clades depicted in this study may reflect the divergence patterns of the mammalian faunas of the Old and New World and reflect a more ancient presence of OPXV on what are now the American continents. Genes from the central region of the poxvirus genome are generally more conserved than genes from either end of the linear genome due to functional constraints imposed on viral replication abilities. The relatively slower evolution of these genes may more accurately reflect the deeper history among the poxvirus group, allowing for robust placement of the NA OPXV within Chordopoxvirinae. Sequence data for nine genes were compiled from three NA OPXV strains plus an additional 50 genomes collected from Genbank. The current, gene sequence based phylogenetic analysis reaffirms the identification of the NA OPXV as the nearest relatives of “Old World” OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. Additionally, the substantial genetic distances that separate the currently described NA OPXV species indicate that it is likely that many more undescribed OPXV/NA OPXV species may be circulating among wild animals in North America.
Applied and Environmental Microbiology | 2006
Irshad M. Sulaiman; Xin Liu; Michael Frace; Nikhat Sulaiman; Melissa Olsen-Rasmussen; Elizabeth Neuhaus; Paul A. Rota; Robert M. Wohlhueter
ABSTRACT Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.
Viruses | 2016
Giliane de Souza Trindade; Ginny L. Emerson; Scott Sammons; Michael Frace; Dhwani Govil; Bruno Eduardo Fernandes Mota; Jônatas Santos Abrahão; Felipe L. Assis; Melissa Olsen-Rasmussen; Cynthia S. Goldsmith; Yu Li; Darin S. Carroll; Flávio Guimarães da Fonseca; Erna Geessien Kroon; Inger K. Damon
Vaccinia virus (VACV) has been implicated in infections of dairy cattle and humans, and outbreaks have substantially impacted local economies and public health in Brazil. During a 2005 outbreak, a VACV strain designated Serro 2 virus (S2V) was collected from a 30-year old male milker. Our aim was to phenotypically and genetically characterize this VACV Brazilian isolate. S2V produced small round plaques without associated comets when grown in BSC40 cells. Furthermore, S2V was less virulent than the prototype strain VACV-Western Reserve (WR) in a murine model of intradermal infection, producing a tiny lesion with virtually no surrounding inflammation. The genome of S2V was sequenced by primer walking. The coding region spans 184,572 bp and contains 211 predicted genes. Mutations in envelope genes specifically associated with small plaque phenotypes were not found in S2V; however, other alterations in amino acid sequences within these genes were identified. In addition, some immunomodulatory genes were truncated in S2V. Phylogenetic analysis using immune regulatory-related genes, besides the hemagglutinin gene, segregated the Brazilian viruses into two clusters, grouping the S2V into Brazilian VACV group 1. S2V is the first naturally-circulating human-associated VACV, with a low passage history, to be extensively genetically and phenotypically characterized.
Database | 2011
Lee S. Katz; Jay C. Humphrey; Andrew B. Conley; Viswateja Nelakuditi; Andrey O. Kislyuk; Sonia Agrawal; Pushkala Jayaraman; Brian H. Harcourt; Melissa Olsen-Rasmussen; Michael Frace; Nitya V. Sharma; Leonard W. Mayer; I. King Jordan
Neisseria meningitidis is an important pathogen, causing life-threatening diseases including meningitis, septicemia and in some cases pneumonia. Genomic studies hold great promise for N. meningitidis research, but substantial database resources are needed to deal with the wealth of information that comes with completely sequenced and annotated genomes. To address this need, we developed Neisseria Base (NBase), a comparative genomics database and genome browser that houses and displays publicly available N. meningitidis genomes. In addition to existing N. meningitidis genome sequences, we sequenced and annotated 19 new genomes using 454 pyrosequencing and the CG-Pipeline genome analysis tool. In total, NBase hosts 27 complete N. meningitidis genome sequences along with their associated annotations. The NBase platform is designed to be scalable, via the underlying database schema and modular code architecture, such that it can readily incorporate new genomes and their associated annotations. The front page of NBase provides user access to these genomes through searching, browsing and downloading. NBase search utility includes BLAST-based sequence similarity searches along with a variety of semantic search options. All genomes can be browsed using a modified version of the GBrowse platform, and a plethora of information on each gene can be viewed using a customized details page. NBase also has a whole-genome comparison tool that yields single-nucleotide polymorphism differences between two user-defined groups of genomes. Using the virulent ST-11 lineage as an example, we demonstrate how this comparative genomics utility can be used to identify novel genomic markers for molecular profiling of N. meningitidis. Database URL: http://nbase.biology.gatech.edu
Journal of General Virology | 2005
Anna Likos; Scott Sammons; Victoria A. Olson; A. Michael Frace; Yu Li; Melissa Olsen-Rasmussen; Whitni Davidson; Renee L. Galloway; Marina L. Khristova; Mary G. Reynolds; Hui Zhao; Darin S. Carroll; Aaron T. Curns; Pierre Formenty; Joseph J. Esposito; Russell L. Regnery; Inger K. Damon
Science | 2006
Joseph J. Esposito; Scott Sammons; A. Michael Frace; John D. Osborne; Melissa Olsen-Rasmussen; Ming Zhang; Dhwani Govil; Inger K. Damon; Richard Kline; Miriam T. Laker; Yu Li; Geoffrey L. Smith; Hermann Meyer; James W. LeDuc; Robert M. Wohlhueter
Vaccine | 2007
John D. Osborne; Melissa Da Silva; A. Michael Frace; Scott Sammons; Melissa Olsen-Rasmussen; Chris Upton; R. Mark L. Buller; Nanhai Chen; Zehua Feng; Rachel L. Roper; Jonathan Liu; Svetlana Pougatcheva; Weiping Chen; Robert M. Wohlhueter; Joseph J. Esposito