Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Sammons is active.

Publication


Featured researches published by Scott Sammons.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A distinct lineage of influenza A virus from bats

Suxiang Tong; Yan Li; Pierre Rivailler; Christina Conrardy; Danilo A. Alvarez Castillo; Li-Mei Chen; Sergio Recuenco; James A. Ellison; Charles T. Davis; Ian A. York; Amy S. Turmelle; David Moran; Shannon Rogers; Mang Shi; Ying Tao; Michael R. Weil; Kevin Tang; Lori A. Rowe; Scott Sammons; Xiyan Xu; Michael Frace; Kim A. Lindblade; Nancy J. Cox; Larry J. Anderson; Charles E. Rupprecht; Ruben O. Donis

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.


Emerging Infectious Diseases | 2011

Comparative Genomics of Vibrio cholerae from Haiti, Asia, and Africa

Aleisha R. Reimer; Gary Van Domselaar; Steven Stroika; Matthew Walker; Heather Kent; Cheryl L. Tarr; Deborah F. Talkington; Lori A. Rowe; Melissa Olsen-Rasmussen; Michael Frace; Scott Sammons; Georges Dahourou; Jacques Boncy; Anthony M. Smith; Philip Mabon; Aaron Petkau; Morag Graham; Matthew W. Gilmour; Peter Gerner-Smidt

A strain from Haiti shares genetic ancestry with those from Asia and Africa.


Journal of Virology | 2006

Complete-genome phylogenetic approach to varicella-zoster virus evolution: genetic divergence and evidence for recombination.

Peter Norberg; Jan-Åke Liljeqvist; Tomas Bergström; Scott Sammons; D. Scott Schmid; Vladimir N. Loparev

ABSTRACT Recent studies of varicella-zoster virus (VZV) DNA sequence variation, involving large numbers of globally distributed clinical isolates, suggest that this virus has diverged into at least three distinct genotypes designated European (E), Japanese (J), and mosaic (M). In the present study, we determined and analyzed the complete genomic sequences of two M VZV strains and compared them to the sequences of three E strains and two J strains retrieved from GenBank (including the Oka vaccine preparation, V-Oka). Except for a few polymorphic tandem repeat regions, the whole genome, representing approximately 125,000 nucleotides, is highly conserved, presenting a genetic similarity between the E and J genotypes of approximately 99.85%. These analyses revealed that VZV strains distinctly segregate into at least four genotypes (E, J, M1, and M2) in phylogenetic trees supported by high bootstrap values. Separate analyses of informative sites revealed that the tree topology was dependent on the region of the VZV genome used to determine the phylogeny; collectively, these results indicate the observed strain variation is likely to have resulted, at least in part, from interstrain recombination. Recombination analyses suggest that strains belonging to the M1 and M2 genotypes are mosaic recombinant strains that originated from ancestral isolates belonging to the E and J genotypes through recombination on multiple occasions. Furthermore, evidence of more recent recombination events between M1 and M2 strains is present in six segments of the VZV genome. As such, interstrain recombination in dually infected cells seems to figure prominently in the evolutionary history of VZV, a feature it has in common with other herpesviruses. In addition, we report here six novel genomic targets located in open reading frames 51 to 58 suitable for genotyping of clinical VZV isolates.


Bioinformatics | 2010

A computational genomics pipeline for prokaryotic sequencing projects

Andrey O. Kislyuk; Lee S. Katz; Sonia Agrawal; Matthew S. Hagen; Andrew B. Conley; Pushkala Jayaraman; Viswateja Nelakuditi; Jay C. Humphrey; Scott Sammons; Dhwani Govil; Raydel Mair; Kathleen M. Tatti; Maria L. Tondella; Brian H. Harcourt; Leonard W. Mayer; I. King Jordan

Motivation: New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. Results: We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. Availability and implementation: The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


PLOS ONE | 2009

The Phylogenetics and Ecology of the Orthopoxviruses Endemic to North America

Ginny L. Emerson; Yu Li; Michael Frace; Melissa Olsen-Rasmussen; Marina L. Khristova; Dhwani Govil; Scott Sammons; Russell L. Regnery; Kevin L. Karem; Inger K. Damon; Darin S. Carroll

The data presented herein support the North American orthopoxviruses (NA OPXV) in a sister relationship to all other currently described Orthopoxvirus (OPXV) species. This phylogenetic analysis reaffirms the identification of the NA OPXV as close relatives of “Old World” (Eurasian and African) OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. The natural reservoir host(s) for many of the described OPXV species remains unknown although a clear virus-host association exists between the genus OPXV and several mammalian taxa. The hypothesized host associations and the deep divergence of the OPXV/NA OPXV clades depicted in this study may reflect the divergence patterns of the mammalian faunas of the Old and New World and reflect a more ancient presence of OPXV on what are now the American continents. Genes from the central region of the poxvirus genome are generally more conserved than genes from either end of the linear genome due to functional constraints imposed on viral replication abilities. The relatively slower evolution of these genes may more accurately reflect the deeper history among the poxvirus group, allowing for robust placement of the NA OPXV within Chordopoxvirinae. Sequence data for nine genes were compiled from three NA OPXV strains plus an additional 50 genomes collected from Genbank. The current, gene sequence based phylogenetic analysis reaffirms the identification of the NA OPXV as the nearest relatives of “Old World” OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. Additionally, the substantial genetic distances that separate the currently described NA OPXV species indicate that it is likely that many more undescribed OPXV/NA OPXV species may be circulating among wild animals in North America.


Virology | 2012

Using next generation sequencing to identify yellow fever virus in Uganda

Laura K. McMullan; Mike Frace; Scott Sammons; Trevor Shoemaker; Stephen Balinandi; Joseph F. Wamala; Julius J. Lutwama; Robert Downing; Ute Stroeher; Adam MacNeil; Stuart T. Nichol

In October and November 2010, hospitals in northern Uganda reported patients with suspected hemorrhagic fevers. Initial tests for Ebola viruses, Marburg virus, Rift Valley fever virus, and Crimean Congo hemorrhagic fever virus were negative. Unbiased PCR amplification of total RNA extracted directly from patient sera and next generation sequencing resulted in detection of yellow fever virus and generation of 98% of the virus genome sequence. This finding demonstrated the utility of next generation sequencing and a metagenomic approach to identify an etiological agent and direct the response to a disease outbreak.


Mbio | 2014

vanG Element Insertions within a Conserved Chromosomal Site Conferring Vancomycin Resistance to Streptococcus agalactiae and Streptococcus anginosus

Velusamy Srinivasan; Benjamin J. Metcalf; Kristen Knipe; Mahamoudou Ouattara; Lesley McGee; Patricia Lynn Shewmaker; Anita Glennen; Megin Nichols; Carol Harris; Mary Brimmage; Belinda Ostrowsky; Connie Park; Stephanie J. Schrag; Michael Frace; Scott Sammons; Bernard Beall

ABSTRACT Three vancomycin-resistant streptococcal strains carrying vanG elements (two invasive Streptococcus agalactiae isolates [GBS-NY and GBS-NM, both serotype II and multilocus sequence type 22] and one Streptococcus anginosus [Sa]) were examined. The 45,585-bp elements found within Sa and GBS-NY were nearly identical (together designated vanG-1) and shared near-identity over an ~15-kb overlap with a previously described vanG element from Enterococcus faecalis. Unexpectedly, vanG-1 shared much less homology with the 49,321-bp vanG-2 element from GBS-NM, with widely different levels (50% to 99%) of sequence identity shared among 44 related open reading frames. Immediately adjacent to both vanG-1 and vanG-2 were 44,670-bp and 44,680-bp integrative conjugative element (ICE)-like sequences, designated ICE-r, that were nearly identical in the two group B streptococcal (GBS) strains. The dual vanG and ICE-r elements from both GBS strains were inserted at the same position, between bases 1328 and 1329, within the identical RNA methyltransferase (rumA) genes. A GenBank search revealed that although most GBS strains contained insertions within this specific site, only sequence type 22 (ST22) GBS strains contained highly related ICE-r derivatives. The vanG-1 element in Sa was also inserted within this position corresponding to its rumA homolog adjacent to an ICE-r derivative. vanG-1 insertions were previously reported within the same relative position in the E. faecalis rumA homolog. An ICE-r sequence perfectly conserved with respect to its counterpart in GBS-NY was apparent within the same site of the rumA homolog of a Streptococcus dysgalactiae subsp. equisimilis strain. Additionally, homologous vanG-like elements within the conserved rumA target site were evident in Roseburia intestinalis. IMPORTANCE These three streptococcal strains represent the first known vancomycin-resistant strains of their species. The collective observations made from these strains reveal a specific hot spot for insertional elements that is conserved between streptococci and different Gram-positive species. The two GBS strains potentially represent a GBS lineage that is predisposed to insertion of vanG elements. These three streptococcal strains represent the first known vancomycin-resistant strains of their species. The collective observations made from these strains reveal a specific hot spot for insertional elements that is conserved between streptococci and different Gram-positive species. The two GBS strains potentially represent a GBS lineage that is predisposed to insertion of vanG elements.


Journal of Clinical Microbiology | 2007

GeneChip Resequencing of the Smallpox Virus Genome Can Identify Novel Strains: a Biodefense Application

Irshad M. Sulaiman; Kevin Tang; John D. Osborne; Scott Sammons; Robert M. Wohlhueter

ABSTRACT We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future.


Journal of Clinical Microbiology | 2015

Isolation and Enrichment of Cryptosporidium DNA and Verification of DNA Purity for Whole-Genome Sequencing

Yaqiong Guo; Na Li; Colleen Lysen; Michael Frace; Kevin Tang; Scott Sammons; Dawn M. Roellig; Yaoyu Feng; Lihua Xiao

ABSTRACT Whole-genome sequencing of Cryptosporidium spp. is hampered by difficulties in obtaining sufficient, highly pure genomic DNA from clinical specimens. In this study, we developed procedures for the isolation and enrichment of Cryptosporidium genomic DNA from fecal specimens and verification of DNA purity for whole-genome sequencing. The isolation and enrichment of genomic DNA were achieved by a combination of three oocyst purification steps and whole-genome amplification (WGA) of DNA from purified oocysts. Quantitative PCR (qPCR) analysis of WGA products was used as an initial quality assessment of amplified genomic DNA. The purity of WGA products was assessed by Sanger sequencing of cloned products. Next-generation sequencing tools were used in final evaluations of genome coverage and of the extent of contamination. Altogether, 24 fecal specimens of Cryptosporidium parvum, C. hominis, C. andersoni, C. ubiquitum, C. tyzzeri, and Cryptosporidium chipmunk genotype I were processed with the procedures. As expected, WGA products with low (<16.0) threshold cycle (CT ) values yielded mostly Cryptosporidium sequences in Sanger sequencing. The cloning-sequencing analysis, however, showed significant contamination in 5 WGA products (proportion of positive colonies derived from Cryptosporidium genomic DNA, ≤25%). Following this strategy, 20 WGA products from six Cryptosporidium species or genotypes with low (mostly <14.0) CT values were submitted to whole-genome sequencing, generating sequence data covering 94.5% to 99.7% of Cryptosporidium genomes, with mostly minor contamination from bacterial, fungal, and host DNA. These results suggest that the described strategy can be used effectively for the isolation and enrichment of Cryptosporidium DNA from fecal specimens for whole-genome sequencing.


mSphere | 2016

Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

Katherine E. Bowden; Michael R. Weigand; Yanhui Peng; Pamela K. Cassiday; Scott Sammons; Kristen Knipe; Lori A. Rowe; Vladimir N. Loparev; Mili Sheth; Keeley Weening; M. Lucia Tondella; Margaret M. Williams

Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis. ABSTRACT During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.

Collaboration


Dive into the Scott Sammons's collaboration.

Top Co-Authors

Avatar

Michael Frace

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Lori A. Rowe

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Mike Frace

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yu Li

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Darin S. Carroll

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ginny L. Emerson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Inger K. Damon

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Kristen Knipe

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Melissa Olsen-Rasmussen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Vladimir N. Loparev

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge