Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melody S. Clark is active.

Publication


Featured researches published by Melody S. Clark.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2008

How insects survive the cold: molecular mechanisms—a review

Melody S. Clark; M. Roger Worland

Insects vary considerably in their ability to survive low temperatures. The tractability of these organisms to experimentation has lead to considerable physiology-based work investigating both the variability between species and the actual mechanisms themselves. This has highlighted a range of strategies including freeze tolerance, freeze avoidance, protective dehydration and rapid cold hardening, which are often associated with the production of specific chemicals such as antifreezes and polyol cryoprotectants. But we are still far from identifying the critical elements behind over-wintering success and how some species can regularly survive temperatures below −20°C. Molecular biology is the most recent tool to be added to the insect physiologist’s armoury. With the public availability of the genome sequence of model insects such as Drosophila and the production of custom-made molecular resources, such as EST libraries and microarrays, we are now in a position to start dissecting the molecular mechanisms behind some of these well-characterised physiological responses. This review aims to provide a state-of-the-art snapshot of the molecular work currently being conducted into insect cold tolerance and the very interesting preliminary results from such studies, which provide great promise for the future.


BMC Genomics | 2010

Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing

Melody S. Clark; Michael A. S. Thorne; Florbela A. Vieira; João C.R. Cardoso; Deborah M. Power; Lloyd S. Peck

BackgroundThe Antarctic clam, Laternula elliptica, is an infaunal stenothermal bivalve mollusc with a circumpolar distribution. It plays a significant role in bentho-pelagic coupling and hence has been proposed as a sentinel species for climate change monitoring. Previous studies have shown that this mollusc displays a high level of plasticity with regard to shell deposition and damage repair against a background of genetic homogeneity. The Southern Ocean has amongst the lowest present-day CaCO3 saturation rate of any ocean region, and is predicted to be among the first to become undersaturated under current ocean acidification scenarios. Hence, this species presents as an ideal candidate for studies into the processes of calcium regulation and shell deposition in our changing ocean environments.Results454 sequencing of L. elliptica mantle tissue generated 18,290 contigs with an average size of 535 bp (ranging between 142 bp-5.591 kb). BLAST sequence similarity searching assigned putative function to 17% of the data set, with a significant proportion of these transcripts being involved in binding and potentially of a secretory nature, as defined by GO molecular function and biological process classifications. These results indicated that the mantle is a transcriptionally active tissue which is actively proliferating. All transcripts were screened against an in-house database of genes shown to be involved in extracellular matrix formation and calcium homeostasis in metazoans. Putative identifications were made for a number of classical shell deposition genes, such as tyrosinase, carbonic anhydrase and metalloprotease 1, along with novel members of the family 2 G-Protein Coupled Receptors (GPCRs). A membrane transport protein (SEC61) was also characterised and this demonstrated the utility of the clam sequence data as a resource for examining cold adapted amino acid substitutions. The sequence data contained 46,235 microsatellites and 13,084 Single Nucleotide Polymorphisms(SNPs/INDELS), providing a resource for population and also gene function studies.ConclusionsThis is the first 454 data from an Antarctic marine invertebrate. Sequencing of mantle tissue from this non-model species has considerably increased resources for the investigation of the processes of shell deposition and repair in molluscs in a changing environment. A number of promising candidate genes were identified for functional analyses, which will be the subject of further investigation in this species and also used in model-hopping experiments in more tractable and economically important model aquaculture species, such as Crassostrea gigas and Mytilus edulis.


Marine Genomics | 2009

HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: A mini-review

Melody S. Clark; Lloyd S. Peck

The ability to understand and predict the effects of environmental stress on biodiversity is becoming increasingly important in our changing environment. Antarctic marine species are some of the most stenothermal on the planet and many inhabit the waters off the Antarctic Peninsula which is one of the areas where there is rapid regional climate change. Therefore these animals are highly vulnerable to changing environmental temperatures and clearly we need to understand the complexities of their response, not just at the individual species level, but also the implications for the ecosystem as a whole. Heat shock proteins have a long history of use in studies of organism stress responses and have frequently been proposed as potential universal molecular biomarkers, especially for non-model species. In this mini-review, the heat shock response and heat shock proteins (specifically the HSP70 family) are examined in Antarctic marine species alongside their physiological capabilities and limits to answer a series of questions: do these animals have a heat shock response which includes the expression of HSP70 genes? What is the relationship between their heat shock response and physiological capabilities? Can HSP70 genes be used as molecular biomarkers for these species?


BMC Evolutionary Biology | 2006

Evolution of secretin family GPCR members in the metazoa

João C.R. Cardoso; Vanda C. Pinto; Florbela A. Vieira; Melody S. Clark; Deborah M. Power

BackgroundComparative approaches using protostome and deuterostome data have greatly contributed to understanding gene function and organismal complexity. The family 2 G-protein coupled receptors (GPCRs) are one of the largest and best studied hormone and neuropeptide receptor families. They are suggested to have arisen from a single ancestral gene via duplication events. Despite the recent identification of receptor members in protostome and early deuterostome genomes, relatively little is known about their function or origin during metazoan divergence. In this study a comprehensive description of family 2 GPCR evolution is given based on in silico and expression analyses of the invertebrate receptor genes.ResultsFamily 2 GPCR members were identified in the invertebrate genomes of the nematodes C. elegans and C. briggsae, the arthropods D. melanogaster and A. gambiae (mosquito) and in the tunicate C. intestinalis. This suggests that they are of ancient origin and have evolved through gene/genome duplication events. Sequence comparisons and phylogenetic analyses have demonstrated that the immediate gene environment, with regard to gene content, is conserved between the protostome and deuterostome receptor genomic regions. Also that the protostome genes are more like the deuterostome Corticotrophin Releasing Factor (CRF) and Calcitonin/Calcitonin Gene-Related Peptide (CAL/CGRP) receptors members than the other family 2 GPCR members. The evolution of family 2 GPCRs in deuterostomes is characterised by acquisition of new family members, with SCT (Secretin) receptors only present in tetrapods. Gene structure is characterised by an increase in intron number with organismal complexity with the exception of the vertebrate CAL/CGRP receptors.ConclusionThe family 2 GPCR members provide a good example of gene duplication events occurring in tandem with increasing organismal complexity during metazoan evolution. The putative ancestral receptors are proposed to be more like the deuterostome CAL/CGRP and CRF receptors and this may be associated with their fundamental role in calcium regulation and the stress response, both of which are essential for survival.


PLOS ONE | 2011

Upper Temperature Limits of Tropical Marine Ectotherms: Global Warming Implications

Khanh Dung Thi Nguyen; Simon A. Morley; Chien-Houng Lai; Melody S. Clark; Koh Siang Tan; Amanda E. Bates; Lloyd S. Peck

Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour−1, the upper lethal temperature range of intertidal ectotherms was 41–52°C, but this range was narrower and reduced to 37–41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2–3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.


BMC Genomics | 2009

Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis

Nadav Y. Denekamp; Michael A. S. Thorne; Melody S. Clark; Michael Kube; Richard Reinhardt; Esther Lubzens

BackgroundMicroscopic monogonont rotifers, including the euryhaline species Brachionus plicatilis, are typically found in water bodies where environmental factors restrict population growth to short periods lasting days or months. The survival of the population is ensured via the production of resting eggs that show a remarkable tolerance to unfavorable conditions and remain viable for decades. The aim of this study was to generate Expressed Sequence Tags (ESTs) for molecular characterisation of processes associated with the formation of resting eggs, their survival during dormancy and hatching.ResultsFour normalized and four subtractive libraries were constructed to provide a resource for rotifer transcriptomics associated with resting-egg formation, storage and hatching. A total of 47,926 sequences were assembled into 18,000 putative transcripts and analyzed using both Blast and GO annotation. About 28–55% (depending on the library) of the clones produced significant matches against the Swissprot and Trembl databases. Genes known to be associated with desiccation tolerance during dormancy in other organisms were identified in the EST libraries. These included genes associated with antioxidant activity, low molecular weight heat shock proteins and Late Embryonic Abundant (LEA) proteins. Real-time PCR confirmed that LEA transcripts, small heat-shock proteins and some antioxidant genes were upregulated in resting eggs, therefore suggesting that desiccation tolerance is a characteristic feature of resting eggs even though they do not necessarily fully desiccate during dormancy. The role of trehalose in resting-egg formation and survival remains unclear since there was no significant difference between resting-egg producing females and amictic females in the expression of the tps-1 gene. In view of the absence of vitellogenin transcripts, matches to lipoprotein lipase proteins suggest that, similar to the situation in dipterans, these proteins may serve as the yolk proteins in rotifers.ConclusionThe 47,926 ESTs expand significantly the current sequence resource of B. plicatilis. It describes, for the first time, genes putatively associated with resting eggs and will serve as a database for future global expression experiments, particularly for the further identification of dormancy related genes.


The Journal of Experimental Biology | 2014

Acclimation and thermal tolerance in Antarctic marine ectotherms

Lloyd S. Peck; Simon A. Morley; Joëlle Richard; Melody S. Clark

Antarctic marine species have evolved in one of the coldest and most temperature-stable marine environments on Earth. They have long been classified as being stenothermal, or having a poor capacity to resist warming. Here we show that their ability to acclimate their physiology to elevated temperatures is poor compared with species from temperate latitudes, and similar to those from the tropics. Those species that have been demonstrated to acclimate take a very long time to do so, with Antarctic fish requiring up to 21–36 days to acclimate, which is 2–4 times as long as temperate species, and invertebrates requiring between 2 and 5 months to complete whole-animal acclimation. Investigations of upper thermal tolerance (CTmax) in Antarctic marine species have shown that as the rate of warming is reduced in experiments, CTmax declines markedly, ranging from 8 to 17.5°C across 13 species at a rate of warming of 1°C day−1, and from 1 to 6°C at a rate of 1°C month−1. This effect of the rate of warming on CTmax also appears to be present at all latitudes. A macrophysiological analysis of long-term CTmax across latitudes for marine benthic groups showed that both Antarctic and tropical species were less resistant to elevated temperatures in experiments and thus had lower warming allowances (measured as the difference between long-term CTmax and experienced environmental temperature), or warming resistance, than temperate species. This makes them more at risk from warming than species from intermediate latitudes. This suggests that the variability of environmental temperature may be a major factor in dictating an organisms responses to environmental change.


The Journal of Experimental Biology | 2011

Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster.

Jian Zhang; Katie Marshall; J. Timothy Westwood; Melody S. Clark; Brent J. Sinclair

SUMMARY Insects in the field are exposed to multiple bouts of cold, and there is increasing evidence that the fitness consequences of repeated cold exposure differ from the impacts of a single cold exposure. We tested the hypothesis that different kinds of cold exposure (in this case, single short, prolonged and repeated cold exposure) would result in differential gene expression. We exposed 3 day old adult female wild-type Drosophila melanogaster (Diptera: Drosophilidae) to –0.5°C for a single 2 h exposure, a single 10 h exposure, or five 2 h exposures on consecutive days, and extracted RNA after 6 h of recovery. Global gene expression was quantified using an oligonucleotide microarray and validated with real-time PCR using different biological replicates. We identified 76 genes upregulated in response to multiple cold exposure, 69 in response to prolonged cold exposure and 20 genes upregulated in response to a single short cold exposure, with a small amount of overlap between treatments. Three genes – Turandot A, Hephaestus and CG11374 – were upregulated in response to all three cold exposure treatments. Key functional groups upregulated include genes associated with muscle structure and function, the immune response, stress response, carbohydrate metabolism and egg production. We conclude that cold exposure has wide-ranging effects on gene expression in D. melanogaster and that increased duration or frequency of cold exposure has impacts different to those of a single short cold exposure. This has important implications for extrapolating laboratory studies of insect overwintering that are based on only a single cold exposure.


Archive | 2010

Dormancy and resistance in harsh environments

Esther Lubzens; Joan Cerdà; Melody S. Clark

Many organisms have evolved the ability to enter into and revive from a dormant state. They can survive for long periods in this state (often even months to years), yet can become responsive again within minutes or hours. This is often, but not necessarily, associated with desiccation. Preserving one’s body and reviving it in future generations is a dream of mankind. To date, however, we have failed to learn how cells, tissues or entire organisms can be made dormant or be effectively revived at ambient temperatures. In this book studies on organisms, ranging from aquatic cyanobacteria that produce akinetes to hibernating mammals, are presented, and reveal common but also divergent physiological and molecular pathways for surviving in a dormant form or for tolerating harsh environments. Attempting to learn the functions associated with dormancy and how they are regulated is one of the great future challenges. Its relevance to the preservation of cells and tissues is one of the key concerns of this book


BMC Genomics | 2009

Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg)

Melody S. Clark; Michael A. S. Thorne; Jelena Purać; Gavin Burns; Guy Hillyard; Željko D. Popović; Gordana Grubor-Lajšić; M. Roger Worland

BackgroundInsects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species.ResultsA cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery.ConclusionMicroarray analysis has proved to be a powerful technique for understanding the processes and genes involved in cryoprotective dehydration, beyond the few candidate genes identified in the current literature. Dehydration is associated with the mobilisation of trehalose, cell protection and tissue remodelling. Energy production, leading to protein production, and cell division characterise the recovery process. Novel membrane proteins, along with aquaporins and desaturases, have been identified as promising candidates for future functional analyses to better understand membrane remodelling during cellular dehydration.

Collaboration


Dive into the Melody S. Clark's collaboration.

Top Co-Authors

Avatar

Lloyd S. Peck

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

Michael A. S. Thorne

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon A. Morley

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

Gavin Burns

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

Greg Elgar

Francis Crick Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiron P. P. Fraser

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Hillyard

Natural Environment Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge