Mengen Zhai
Fourth Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mengen Zhai.
Journal of Pineal Research | 2014
Liming Yu; Yang Sun; Liang Cheng; Zhenxiao Jin; Yang Yang; Mengen Zhai; Haifeng Pei; Xiaowu Wang; Haifeng Zhang; Qiang Meng; Yu Zhang; Shiqiang Yu; Weixun Duan
Melatonin confers cardioprotective effect against myocardial ischemia/reperfusion (MI/R) injury by reducing oxidative stress. Activation of silent information regulator 1 (SIRT1) signaling also reduces MI/R injury. We hypothesize that melatonin may protect against MI/R injury by activating SIRT1 signaling. This study investigated the protective effect of melatonin treatment on MI/R heart and elucidated its potential mechanisms. Rats were exposed to melatonin treatment in the presence or the absence of the melatonin receptor antagonist luzindole or SIRT1 inhibitor EX527 and then subjected to MI/R operation. Melatonin conferred a cardioprotective effect by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase release, upregulating SIRT1, Bcl‐2 expression and downregulating Bax, caspase‐3 and cleaved caspase‐3 expression. Melatonin treatment also resulted in reduced myocardium superoxide generation, gp91phox expression, malondialdehyde level, and increased myocardium superoxide dismutase (SOD) level, which indicate that the MI/R‐induced oxidative stress was significantly attenuated. However, these protective effects were blocked by EX527 or luzindole, indicating that SIRT1 signaling and melatonin receptor may be specifically involved in these effects. In summary, our results demonstrate that melatonin treatment attenuates MI/R injury by reducing oxidative stress damage via activation of SIRT1 signaling in a receptor‐dependent manner.
Journal of Pineal Research | 2015
Liming Yu; Hongliang Liang; Xiaochao Dong; Guolong Zhao; Zhenxiao Jin; Mengen Zhai; Yang Yang; Wensheng Chen; Jincheng Liu; Wei Yi; Jian Yang; Dinghua Yi; Weixun Duan; Shiqiang Yu
Diabetes mellitus (DM) increases myocardial oxidative stress and endoplasmic reticulum (ER) stress. Melatonin confers cardioprotective effect by suppressing oxidative damage. However, the effect and mechanism of melatonin on myocardial ischemia–reperfusion (MI/R) injury in type 2 diabetic state are still unknown. In this study, we developed high‐fat diet‐fed streptozotocin (HFD‐STZ) rat, a well‐known type 2 diabetic model, to evaluate the effect of melatonin on MI/R injury with a focus on silent information regulator 1 (SIRT1) signaling, oxidative stress, and PERK/eIF2α/ATF4‐mediated ER stress. HFD‐STZ treated rats were exposed to melatonin treatment in the presence or the absence of sirtinol (a SIRT1 inhibitor) and subjected to MI/R surgery. Compared with nondiabetic animals, type 2 diabetic rats exhibited significantly decreased myocardial SIRT1 signaling, increased apoptosis, enhanced oxidative stress, and ER stress. Additionally, further reduced SIRT1 signaling, aggravated oxidative damage, and ER stress were found in diabetic animals subjected to MI/R surgery. Melatonin markedly reduced MI/R injury by improving cardiac functional recovery and decreasing myocardial apoptosis in type 2 diabetic animals. Melatonin treatment up‐regulated SIRT1 expression, reduced oxidative damage, and suppressed PERK/eIF2α/ATF4 signaling. However, these effects were all attenuated by SIRT1 inhibition. Melatonin also protected high glucose/high fat cultured H9C2 cardiomyocytes against simulated ischemia–reperfusion injury‐induced ER stress by activating SIRT1 signaling while SIRT1 siRNA blunted this action. Taken together, our study demonstrates that reduced cardiac SIRT1 signaling in type 2 diabetic state aggravates MI/R injury. Melatonin ameliorates reperfusion‐induced oxidative stress and ER stress via activation of SIRT1 signaling, thus reducing MI/R damage and improving cardiac function.
Journal of Pineal Research | 2015
Liming Yu; Hongliang Liang; Zhihong Lu; Guolong Zhao; Mengen Zhai; Yang Yang; Jian Yang; Dinghua Yi; Wensheng Chen; Xiaowu Wang; Weixun Duan; Zhenxiao Jin; Shiqiang Yu
Melatonin confers profound protective effect against myocardial ischemia–reperfusion injury (MI/RI). Activation of Notch1/Hairy and enhancer of split 1 (Hes1) signaling also ameliorates MI/RI. We hypothesize that melatonin attenuates MI/RI‐induced oxidative damage by activating Notch1/Hes1 signaling pathway with phosphatase and tensin homolog deleted on chromosome 10 (Pten)/Akt acting as the downstream signaling pathway in a melatonin membrane receptor‐dependent manner. Male Sprague Dawley rats were treated with melatonin (10 mg/kg/day) for 4 wk and then subjected to MI/R surgery. Melatonin significantly improved cardiac function and decreased myocardial apoptosis and oxidative damage. Furthermore, in cultured H9C2 cardiomyocytes, melatonin (100 μmol/L) attenuated simulated ischemia–reperfusion (SIR)‐induced myocardial apoptosis and oxidative damage. Both in vivo and in vitro study demonstrated that melatonin treatment increased Notch1, Notch1 intracellular domain (NICD), Hes1, Bcl‐2 expressions, and p‐Akt/Akt ratio and decreased Pten, Bax, and caspase‐3 expressions. However, these protective effects conferred by melatonin were blocked by DAPT (the specific inhibitor of Notch1 signaling), luzindole (the antagonist of melatonin membrane receptors), Notch1 siRNA, or Hes1 siRNA administration. In summary, our study demonstrates that melatonin treatment protects against MI/RI by modulating Notch1/Hes1 signaling in a receptor‐dependent manner and Pten/Akt signaling pathways are key downstream mediators.
Journal of Pineal Research | 2017
Mengen Zhai; Buying Li; Weixun Duan; Lin Jing; Bin Zhang; Meng Zhang; Liming Yu; Zhenhua Liu; Bo Yu; Kai Ren; Erhe Gao; Yang Yang; Hongliang Liang; Zhenxiao Jin; Shiqiang Yu
Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide‐dependent histone deacetylases. Sirtuin‐3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress‐related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl‐2 expression and decreased Bax, Caspase‐3, and cleaved Caspase‐3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3‐(1H‐1,2,3‐triazol‐4‐yl)pyridine (3‐TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3‐targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway.
Acta Pharmacologica Sinica | 2016
Guolong Zhao; Li-ming Yu; Wen-li Gao; Weixun Duan; Bo Jiang; Xu-dong Liu; Bin Zhang; Zhenhua Liu; Mengen Zhai; Zhenxiao Jin; Shiqiang Yu; Yun Wang
Aim:Berberine (BBR), an isoquinoline-derived alkaloid isolated from Rhizoma coptidis, exerts cardioprotective effects. Because endoplasmic reticulum (ER) stress plays a pivotal role in myocardial ischemia/reperfusion (MI/R)-induced apoptosis, it was interesting to examine whether the protective effects of BBR resulted from modulating ER stress levels during MI/R injury, and to define the signaling mechanisms in this process.Methods:Male rats were treated with BBR (200 mg·kg−1·d−1, ig) for 2 weeks, and then subjected to MI/R surgery. Cardiac dimensions and function were assessed using echocardiography. Myocardial infarct size and apoptosis was examined. Total serum LDH levels and CK activities, superoxide production, MDA levels and the antioxidant SOD activities in heart tissue were determined. An in vitro study was performed on cultured rat embryonic myocardium-derived cells H9C2 exposed to simulated ischemia/reperfusion (SIR). The expression of apoptotic, ER stress-related and signaling proteins were assessed using Western blot analyses.Results:Pretreatment with BBR significantly reduced MI/R-induced myocardial infarct size, improved cardiac function, and suppressed myocardial apoptosis and oxidative damage. Furthermore, pretreatment with BBR suppressed MI/R-induced ER stress, evidenced by down-regulating the phosphorylation levels of myocardial PERK and eIF2α and the expression of ATF4 and CHOP in heart tissues. Pretreatment with BBR also activated the JAK2/STAT3 signaling pathway in heart tissues, and co-treatment with AG490, a specific JAK2/STAT3 inhibitor, blocked not only the protective effects of BBR, but also the inhibition of BBR on MI/R-induced ER stress. In H9C2 cells, treatment with BBR (50 μmol/L) markedly reduced SIR-induced cell apoptosis, oxidative stress and ER stress, which were abolished by transfection with JAK2 siRNA.Conclusion:BBR ameliorates MI/R injury in rats by activating the AK2/STAT3 signaling pathway and attenuating ER stress-induced apoptosis.
Oxidative Medicine and Cellular Longevity | 2016
Liming Yu; Qing Li; Bo Yu; Yang Yang; Zhenxiao Jin; Weixun Duan; Guolong Zhao; Mengen Zhai; Lijun Liu; Dinghua Yi; Min Chen; Shiqiang Yu
Berberine (BBR) exerts potential protective effect against myocardial ischemia/reperfusion (MI/R) injury. Activation of silent information regulator 1 (SIRT1) signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl) and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA) level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD) level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.
Journal of Pineal Research | 2017
Mengen Zhai; Zhenhua Liu; Bin Zhang; Lin Jing; Buying Li; Kaifeng Li; Xiuju Chen; Meng Zhang; Bo Yu; Kai Ren; Yang Yang; Wei Yi; Jian Yang; Jincheng Liu; Dinghua Yi; Hongliang Liang; Zhenxiao Jin; Russel J. Reiter; Weixun Duan; Shiqiang Yu
Melatonin, a circadian molecule secreted by the pineal gland, confers a protective role against cardiac hypertrophy induced by hyperthyroidism, chronic hypoxia, and isoproterenol. However, its role against pressure overload‐induced cardiac hypertrophy and the underlying mechanisms remains elusive. In this study, we investigated the pharmacological effects of melatonin on pathological cardiac hypertrophy induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or sham surgery at day 0 and were then treated with melatonin (20 mg/kg/day, via drinking water) for 4 or 8 weeks. The 8‐week survival rate following TAC surgery was significantly increased by melatonin. Melatonin treatment for 8 weeks markedly ameliorated cardiac hypertrophy. Compared with the TAC group, melatonin treatment for both 4 and 8 weeks reduced pulmonary congestion, upregulated the expression level of α‐myosin heavy chain, downregulated the expression level of β‐myosin heavy chain and atrial natriuretic peptide, and attenuated the degree of cardiac fibrosis. In addition, melatonin treatment slowed the deterioration of cardiac contractile function caused by pressure overload. These effects of melatonin were accompanied by a significant upregulation in the expression of peroxisome proliferator‐activated receptor‐gamma co‐activator‐1 beta (PGC‐1β) and the inhibition of oxidative stress. In vitro studies showed that melatonin also protects against angiotensin II‐induced cardiomyocyte hypertrophy and oxidative stress, which were largely abolished by knocking down the expression of PGC‐1β using small interfering RNA. In summary, our results demonstrate that melatonin protects against pathological cardiac hypertrophy induced by pressure overload through activating PGC‐1β.
Acta Pharmacologica Sinica | 2017
Meng Zhang; Li-ming Yu; Hang Zhao; Xuanxuan Zhou; Qian Yang; Fan Song; Li Yan; Mengen Zhai; Buying Li; Bin Zhang; Zhenxiao Jin; Weixun Duan; Si-wang Wang
2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a water-soluble active component extracted from Polygonum multiflorum Thunb. A number of studies demonstrate that TSG exerts cardioprotective effects. Since endoplasmic reticulum (ER) stress plays a key role in myocardial ischemia/reperfusion (MI/R)-induced cell apoptosis, we sought to determine whether modulation of the ER stress during MI/R injury was involved in the cardioprotective action of TSG. Male mice were treated with TSG (60 mg·kg−1·d−1, ig) for 2 weeks and then were subjected to MI/R surgery. Pre-administration of TSG significantly improved post-operative cardiac function, and suppressed MI/R-induced myocardial apoptosis, evidenced by the reduction in the myocardial apoptotic index, serum levels of LDH and CK after 6 h of reperfusion. TSG (0.1–1000 μmol/L) did not affect the viability of cultured H9c2 cardiomyoblasts in vitro, but pretreatment with TSG dose-dependently decreased simulated ischemia/reperfusion (SIR)-induced cell apoptosis. Furthermore, both in vivo and in vitro studies revealed that TSG treatment activated the Notch1/Hes1 signaling pathway and suppressed ER stress, as evidenced by increasing Notch1, Notch1 intracellular domain (NICD), Hes1, and Bcl-2 expression levels and by decreasing p-PERK/PERK ratio, p-eIF2α/eIF2α ratio, and ATF4, CHOP, Bax, and caspase-3 expression levels. Moreover, the protective effects conferred by TSG on SIR-treated H9c2 cardiomyoblasts were abolished by co-administration of DAPT (the Notch1 signaling inhibitor). In summary, TSG ameliorates MI/R injury in vivo and in vitro by activating the Notch1/Hes1 signaling pathway and attenuating ER stress-induced apoptosis.
Cell and Tissue Research | 2015
Hongliang Liang; Weixun Duan; Huiyuan Hou; Wei Yi; Jinzhou Zhang; Zhenxiao Jin; Mengen Zhai; Shiqiang Yu; Jincheng Liu; Dinghua Yi
Over the past decade, adult stem cells have attracted great attention because of their ability to potentially regenerate desired tissues or entire organs. With the emergence of nanomaterial-based gene therapy, adult stem cells have been considered as a proper tool for the biomedical field. In this study, we utilized organically modified silica (ORMOSIL) nanoparticles to deliver small interfering RNA (siRNA) against pigment epithelium-derived factor (PEDF) and induce the differentiation of human cardiac stem cells (CSCs). We found that the down-regulation of PEDF can inhibit the proliferation of human CSCs and induce cell differentiation. To further study the mechanism, we have tested the Notch signalling pathway genes, Hes1 and Hes5, and found that their expressions were inhibited by the PEDF down-regulation. Furthermore, with the restoration of PEDF, both the proliferation of human CSCs and expressions of Hes1 and Hes5 were recovered. Our results suggest for the first time the use of ORMOSIL as nanocarriers for the delivery of PEDF siRNA in human CSCs, and demonstrated the cooperation between PEDF and the Notch signalling pathway in maintaining the self-renewal and pluripotency of stem cells. PEDF as the essential controller in differentiation may be a promising target for the regulation of cardiac homeostasis and damage repair, which opens new treatment strategies using nanomaterials for heart disease therapy.
Oxidative Medicine and Cellular Longevity | 2018
Bin Zhang; Mengen Zhai; Buying Li; Zhenhua Liu; Kaifeng Li; Liqing Jiang; Meng Zhang; Wei Yi; Jian Yang; Dinghua Yi; Hongliang Liang; Zhenxiao Jin; Weixun Duan; Shiqiang Yu
Reducing oxidative stress is a crucial therapeutic strategy for ameliorating diabetic myocardial ischemia/reperfusion (MI/R) injury. Honokiol (HKL) acts as an effective cardioprotective agent for its strong antioxidative activity. However, its roles and underlying mechanisms against MI/R injury in type 1 diabetes (T1D) remain unknown. Since SIRT1 and Nrf2 are pivotal regulators in diabetes mellitus patients suffering from MI/R injury, we hypothesized that HKL ameliorates diabetic MI/R injury via the SIRT1-Nrf2 signaling pathway. Streptozotocin-induced T1D rats and high-glucose-treated H9c2 cells were exposed to HKL, with or without administration of the SIRT1 inhibitor EX527, SIRT1 siRNA, or Nrf2 siRNA, and then subjected to I/R operation. We found that HKL markedly improved the postischemic cardiac function, decreased the infarct size, reduced the myocardial apoptosis, and diminished the reactive oxygen species generation. Intriguingly, HKL remarkably activated SIRT1 signaling, enhanced Nrf2 nuclear translocation, increased antioxidative signaling, and decreased apoptotic signaling. However, these effects were largely abolished by EX527 or SIRT1 siRNA. Additionally, our cellular experiments showed that Nrf2 siRNA blunted the cytoprotective effects of HKL, without affecting SIRT1 expression and activity. Collectively, these novel findings indicate that HKL abates MI/R injury in T1D by ameliorating myocardial oxidative damage and apoptosis via the SIRT1-Nrf2 signaling pathway.