Zhenxiao Jin
Fourth Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhenxiao Jin.
Free Radical Biology and Medicine | 2013
Yang Yang; Weixun Duan; Yan Lin; Wei Yi; Zhenxing Liang; Juanjuan Yan; Ning Wang; Chao Deng; Song Zhang; Yue Li; Wensheng Chen; Shiqiang Yu; Dinghua Yi; Zhenxiao Jin
Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling.
Journal of Pineal Research | 2013
Yang Yang; Weixun Duan; Zhenxiao Jin; Wei Yi; Juanjuan Yan; Song Zhang; Ning Wang; Zhenxing Liang; Yue Li; Wensheng Chen; Dinghua Yi; Shiqiang Yu
Ischemia/reperfusion injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Numerous data indicate that the JAK2/STAT3 signaling pathway is specifically involved in preventing myocardial IRI. Melatonin has potent activity against IRI and may regulate JAK2/STAT3 signaling. This study investigated the protective effect of melatonin pretreatment on myocardial IRI and elucidated its potential mechanism. Perfused isolated rat hearts and cultured neonatal rat cardiomyocytes were exposed to melatonin in the absence or presence of the JAK2/STAT3 inhibitor AG490 or JAK2 siRNA and then subjected to IR. Melatonin conferred a cardio‐protective effect, as shown by improved postischemic cardiac function, decreased infarct size, reduced apoptotic index, diminished lactate dehydrogenase release, up‐regulation of the anti‐apoptotic protein Bcl2, and down‐regulation of the pro‐apoptotic protein Bax. AG490 or JAK2 siRNA blocked melatonin‐mediated cardio‐protection by inhibiting JAK2/STAT3 signaling. Melatonin exposure also resulted in a well‐preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase (SOD) activity, and decreased formation of mitochondrial hydrogen peroxide (H2O2) and malondialdehyde (MDA), which indicates that the IR‐induced mitochondrial oxidative damage was significantly attenuated. However, this melatonin‐induced effect on mitochondrial function was reversed by AG490 or JAK2 siRNA treatment. In summary, our results demonstrate that melatonin pretreatment can attenuate IRI by reducing IR‐induced mitochondrial oxidative damage via the activation of the JAK2/STAT3 signaling pathway.
Journal of Pineal Research | 2014
Liming Yu; Yang Sun; Liang Cheng; Zhenxiao Jin; Yang Yang; Mengen Zhai; Haifeng Pei; Xiaowu Wang; Haifeng Zhang; Qiang Meng; Yu Zhang; Shiqiang Yu; Weixun Duan
Melatonin confers cardioprotective effect against myocardial ischemia/reperfusion (MI/R) injury by reducing oxidative stress. Activation of silent information regulator 1 (SIRT1) signaling also reduces MI/R injury. We hypothesize that melatonin may protect against MI/R injury by activating SIRT1 signaling. This study investigated the protective effect of melatonin treatment on MI/R heart and elucidated its potential mechanisms. Rats were exposed to melatonin treatment in the presence or the absence of the melatonin receptor antagonist luzindole or SIRT1 inhibitor EX527 and then subjected to MI/R operation. Melatonin conferred a cardioprotective effect by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase release, upregulating SIRT1, Bcl‐2 expression and downregulating Bax, caspase‐3 and cleaved caspase‐3 expression. Melatonin treatment also resulted in reduced myocardium superoxide generation, gp91phox expression, malondialdehyde level, and increased myocardium superoxide dismutase (SOD) level, which indicate that the MI/R‐induced oxidative stress was significantly attenuated. However, these protective effects were blocked by EX527 or luzindole, indicating that SIRT1 signaling and melatonin receptor may be specifically involved in these effects. In summary, our results demonstrate that melatonin treatment attenuates MI/R injury by reducing oxidative stress damage via activation of SIRT1 signaling in a receptor‐dependent manner.
Circulation | 2013
Yang Yang; Weixun Duan; Yue Li; Zhenxiao Jin; Juanjuan Yan; Shiqiang Yu; Dinghua Yi
The incidence of cardiovascular diseases is increasing at an alarming rate throughout the world. According to the World Health Report 2010, cardiovascular disease accounts for 17.1 million global deaths per year, or 29% of total deaths worldwide. It is predicted that this number will increase to 23.6 million by 2030. Myocardial ischemia, which is reported to induce irreversible damage to the myocardium, causes a number of cardiovascular diseases, such as myocardial infarction, myocardial hypertrophy, atherosclerosis, and heart failure. Medical treatment that effectively prevents ischemic injury would alleviate the consequent development of cardiac remodeling and failure. Previous studies have indicated that ischemic preconditioning (IPC), caloric restriction, resveratrol preconditioning, and some related factors can prevent ischemic injury to the heart and are cardioprotective.1 The underlying mechanisms of these interventions appear to be controlled by a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase called silent information regulator 1 (SIRT1). SIRT1 is a member of the class III group of histone deacetylases, collectively called sirtuins.2 The mammalian sirtuin family consists of 7 members, designated SIRT1 through SIRT7, which are characterized by a conserved 275-amino-acid catalytic core and unique additional N-terminal and C-terminal sequences of variable length.3 Previous studies have shown that SIRT1 can deacetylate many transcription factors, including forkhead box O (FOXO) transcription factors, p53, nuclear factor-κB (NF-κB), liver X receptor, peroxisome proliferator–activated receptor γ, and brain and muscle Arnt-like protein 1, and nuclear coactivators, as well, including peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), cAMP-responsive element-binding protein–regulated transcription coactivator 2, and period homolog 2.4,5 SIRT1 also deacetylates serine/threonine kinase 11, endothelial nitric oxide synthase (eNOS), and histones H1, H3, and H4.2 It has been reported that SIRT1 performs a wide variety of functions in a variety …
Journal of Pineal Research | 2015
Liming Yu; Hongliang Liang; Xiaochao Dong; Guolong Zhao; Zhenxiao Jin; Mengen Zhai; Yang Yang; Wensheng Chen; Jincheng Liu; Wei Yi; Jian Yang; Dinghua Yi; Weixun Duan; Shiqiang Yu
Diabetes mellitus (DM) increases myocardial oxidative stress and endoplasmic reticulum (ER) stress. Melatonin confers cardioprotective effect by suppressing oxidative damage. However, the effect and mechanism of melatonin on myocardial ischemia–reperfusion (MI/R) injury in type 2 diabetic state are still unknown. In this study, we developed high‐fat diet‐fed streptozotocin (HFD‐STZ) rat, a well‐known type 2 diabetic model, to evaluate the effect of melatonin on MI/R injury with a focus on silent information regulator 1 (SIRT1) signaling, oxidative stress, and PERK/eIF2α/ATF4‐mediated ER stress. HFD‐STZ treated rats were exposed to melatonin treatment in the presence or the absence of sirtinol (a SIRT1 inhibitor) and subjected to MI/R surgery. Compared with nondiabetic animals, type 2 diabetic rats exhibited significantly decreased myocardial SIRT1 signaling, increased apoptosis, enhanced oxidative stress, and ER stress. Additionally, further reduced SIRT1 signaling, aggravated oxidative damage, and ER stress were found in diabetic animals subjected to MI/R surgery. Melatonin markedly reduced MI/R injury by improving cardiac functional recovery and decreasing myocardial apoptosis in type 2 diabetic animals. Melatonin treatment up‐regulated SIRT1 expression, reduced oxidative damage, and suppressed PERK/eIF2α/ATF4 signaling. However, these effects were all attenuated by SIRT1 inhibition. Melatonin also protected high glucose/high fat cultured H9C2 cardiomyocytes against simulated ischemia–reperfusion injury‐induced ER stress by activating SIRT1 signaling while SIRT1 siRNA blunted this action. Taken together, our study demonstrates that reduced cardiac SIRT1 signaling in type 2 diabetic state aggravates MI/R injury. Melatonin ameliorates reperfusion‐induced oxidative stress and ER stress via activation of SIRT1 signaling, thus reducing MI/R damage and improving cardiac function.
Journal of Pineal Research | 2015
Liming Yu; Hongliang Liang; Zhihong Lu; Guolong Zhao; Mengen Zhai; Yang Yang; Jian Yang; Dinghua Yi; Wensheng Chen; Xiaowu Wang; Weixun Duan; Zhenxiao Jin; Shiqiang Yu
Melatonin confers profound protective effect against myocardial ischemia–reperfusion injury (MI/RI). Activation of Notch1/Hairy and enhancer of split 1 (Hes1) signaling also ameliorates MI/RI. We hypothesize that melatonin attenuates MI/RI‐induced oxidative damage by activating Notch1/Hes1 signaling pathway with phosphatase and tensin homolog deleted on chromosome 10 (Pten)/Akt acting as the downstream signaling pathway in a melatonin membrane receptor‐dependent manner. Male Sprague Dawley rats were treated with melatonin (10 mg/kg/day) for 4 wk and then subjected to MI/R surgery. Melatonin significantly improved cardiac function and decreased myocardial apoptosis and oxidative damage. Furthermore, in cultured H9C2 cardiomyocytes, melatonin (100 μmol/L) attenuated simulated ischemia–reperfusion (SIR)‐induced myocardial apoptosis and oxidative damage. Both in vivo and in vitro study demonstrated that melatonin treatment increased Notch1, Notch1 intracellular domain (NICD), Hes1, Bcl‐2 expressions, and p‐Akt/Akt ratio and decreased Pten, Bax, and caspase‐3 expressions. However, these protective effects conferred by melatonin were blocked by DAPT (the specific inhibitor of Notch1 signaling), luzindole (the antagonist of melatonin membrane receptors), Notch1 siRNA, or Hes1 siRNA administration. In summary, our study demonstrates that melatonin treatment protects against MI/RI by modulating Notch1/Hes1 signaling in a receptor‐dependent manner and Pten/Akt signaling pathways are key downstream mediators.
PLOS ONE | 2013
Weixun Duan; Yang Yang; Wei Yi; Juanjuan Yan; Zhenxin Liang; Ning Wang; Yue Li; Wensheng Chen; Shiqiang Yu; Zhenxiao Jin; Dinghua Yi
Previous studies have shown that the JAK2/STAT3 signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, we explored the role of the JAK2/STAT3 signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of melatonin against (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway) and JAK2 siRNA were used to manipulate JAK2/STAT3 activity, and the results showed that AG490 and JAK2 siRNA inhibited OSI and the levels of p-JAK2 and p-STAT3. HUVECs were then subjected to H2O2 in the absence or presence of melatonin, the main secretory product of the pineal gland. Melatonin conferred a protective effect against H2O2, which was evidenced by improvements in cell viability, adhesive ability and migratory ability, decreases in the apoptotic index and reactive oxygen species (ROS) production and several biochemical parameters in HUVECs. Immunofluorescence and Western blotting showed that H2O2 treatment increased the levels of p-JAK2, p-STAT3, Cytochrome c, Bax and Caspase3 and decreased the levels of Bcl2, whereas melatonin treatment partially reversed these effects. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in a protective effect against endothelial OSI. The protective effects of melatonin against OSI, at least partially, depend upon JAK2/STAT3 inhibition.
Cellular Signalling | 2013
Yang Yang; Weixun Duan; Zhenxin Liang; Wei Yi; Juanjuan Yan; Ning Wang; Yue Li; Wensheng Chen; Shiqiang Yu; Zhenxiao Jin; Dinghua Yi
Previous studies have demonstrated that Notch signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, our aim was to explore the role of the Notch signaling pathway in hydrogen peroxide (H(2)O(2))-induced OSI and the protective effect of curcumin during (H(2)O(2))-induced injury in human umbilical vein endothelial cells (HUVECs). DAPT, a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to study Notch activity. Further, HUVECs were exposed to H(2)O(2) in the absence or presence of curcumin. DAPT and Notch1 siRNA significantly inhibited OSI and the expression of Notch1 and Hes1. Curcumin conferred a protective effect on the HUVECs against H(2)O(2), which was evidenced by improved cell viability, adhesive ability and migratory ability and a decreased apoptotic index, decreased production of reactive oxygen species (ROS) and a reduction in several biochemical parameters. Immunofluorescence and Western blotting analyses demonstrated that H(2)O(2) treatment upregulated the expression of Notch1, Hes1, Caspase3, Bax and cytochrome c downregulated the expression of Bcl2, and treatment with curcumin reversed these effects. We demonstrated for the first time that the inhibition of Notch signaling pathway imparts a protective effect against endothelial OSI. The protective effects of curcumin against OSI are at least in part dependent on Notch1 inhibition.
Journal of Pineal Research | 2017
Mengen Zhai; Buying Li; Weixun Duan; Lin Jing; Bin Zhang; Meng Zhang; Liming Yu; Zhenhua Liu; Bo Yu; Kai Ren; Erhe Gao; Yang Yang; Hongliang Liang; Zhenxiao Jin; Shiqiang Yu
Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide‐dependent histone deacetylases. Sirtuin‐3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress‐related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl‐2 expression and decreased Bax, Caspase‐3, and cleaved Caspase‐3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3‐(1H‐1,2,3‐triazol‐4‐yl)pyridine (3‐TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3‐targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway.
Scientific Reports | 2017
Liming Yu; Bing Gong; Weixun Duan; Chongxi Fan; Jian Zhang; Zhi Li; Xiaodong Xue; Yinli Xu; Dandan Meng; Buying Li; Meng Zhang; Bin Zhang; Zhenxiao Jin; Shiqiang Yu; Yang Yang; Huishan Wang
Enhancing mitochondrial biogenesis and reducing mitochondrial oxidative stress have emerged as crucial therapeutic strategies to ameliorate diabetic myocardial ischemia/reperfusion (MI/R) injury. Melatonin has been reported to be a safe and potent cardioprotective agent. However, its role on mitochondrial biogenesis or reactive oxygen species (ROS) production in type 1 diabetic myocardium and the underlying mechanisms remain unknown. We hypothesize that melatonin ameliorates MI/R injury in type 1 diabetic rats by preserving mitochondrial function via AMPK-PGC-1α-SIRT3 signaling pathway. Both our in vivo and in vitro data showed that melatonin reduced MI/R injury by improving cardiac function, enhancing mitochondrial SOD activity, ATP production and oxidative phosphorylation complex (II, III and IV), reducing myocardial apoptosis and mitochondrial MDA, H2O2 generation. Importantly, melatonin also activated AMPK-PGC-1α-SIRT3 signaling and increased SOD2, NRF1 and TFAM expressions. However, these effects were abolished by Compound C (a specific AMPK signaling blocker) administration. Additionally, our cellular experiment showed that SIRT3 siRNA inhibited the cytoprotective effect of melatonin without affecting p-AMPK/AMPK ratio and PGC-1α expression. Taken together, we concluded that melatonin preserves mitochondrial function by reducing mitochondrial oxidative stress and enhancing its biogenesis, thus ameliorating MI/R injury in type 1 diabetic state. AMPK-PGC1α-SIRT3 axis plays an essential role in this process.