Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mera Stein is active.

Publication


Featured researches published by Mera Stein.


Circulation | 2005

Impaired Impulse Propagation in Scn5a-Knockout Mice Combined Contribution of Excitability, Connexin Expression, and Tissue Architecture in Relation to Aging

Toon A.B. van Veen; Mera Stein; Anne Royer; Khaï Le Quang; Flavien Charpentier; William H. Colledge; Christopher L.-H. Huang; Ronald Wilders; Andrew A. Grace; Denis Escande; Jacques M.T. de Bakker; Harold V.M. van Rijen

Background—The SCN5A sodium channel is a major determinant for cardiac impulse propagation. We used epicardial mapping of the atria, ventricles, and septae to investigate conduction velocity (CV) in Scn5a heterozygous young and old mice. Methods and Results—Mice were divided into 4 groups: (1) young (3 to 4 months) wild-type littermates (WT); (2) young heterozygous Scn5a-knockout mice (HZ); (3) old (12 to 17 months) WT; and (4) old HZ. In young HZ hearts, CV in the right but not the left ventricle was reduced in agreement with a rightward rotation in the QRS axes; fibrosis was virtually absent in both ventricles, and the pattern of connexin43 (Cx43) expression was similar to that of WT mice. In old WT animals, the right ventricle transversal CV was slightly reduced and was associated with interstitial fibrosis. In old HZ hearts, right and left ventricle CVs were severely reduced both in the transversal and longitudinal direction; multiple areas of severe reactive fibrosis invaded the myocardium, accompanied by markedly altered Cx43 expression. The right and left bundle-branch CVs were comparable to those of WT animals. The atria showed only mild fibrosis, with heterogeneously disturbed Cx40 and Cx43 expression. Conclusions—A 50% reduction in Scn5a expression alone or age-related interstitial fibrosis only slightly affects conduction. In aged HZ mice, reduced Scn5a expression is accompanied by the presence of reactive fibrosis and disarrangement of gap junctions, which results in profound conduction impairment.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Reduction of fibrosis-related arrhythmias by chronic renin-angiotensin-aldosterone system inhibitors in an aged mouse model

Mera Stein; Mohamed Boulaksil; John A. Jansen; Eva Herold; Maartje Noorman; Jaap A. Joles; Toon A.B. van Veen; Marien J.C. Houtman; Markus A. Engelen; Richard N.W. Hauer; Jacques M.T. de Bakker; Harold V.M. van Rijen

Myocardial fibrosis increases arrhythmia vulnerability of the diseased heart. The renin-angiotensin-aldosterone system (RAAS) governs myocardial collagen synthesis. We hypothesized that reducing cardiac fibrosis by chronic RAAS inhibition would result in reduced arrhythmia vulnerability of the senescent mouse heart. Wild-type mice (52 wk old) were treated for 36 wk: 1) untreated control (C); 2) eplerenone (E); 3) losartan (L); and 4) cotreatment with eplerenone and losartan (EL). Ventricular epicardial activation mapping was performed on Langendorff-perfused hearts. Arrhythmia inducibility was tested by one to three premature stimuli and burst pacing. Longitudinal and transverse conduction velocity and dispersion of conduction were determined during pacing at a basic cycle length of 150 ms. Sirius red staining (collagen) was performed. As a result, in the RV of mice in the E, L, and EL groups, transverse conduction velocity was significantly increased and anisotropic ratio was significantly decreased compared with those values of mice in the C group. Anisotropic reentrant arrhythmias were induced in 52% of untreated mice and significantly reduced to 22%, 26%, and 16% in the E, L, and EL groups, respectively. Interstitial fibrosis was significantly decreased in both the RV and LV of all treated groups. Scattered patches of replacement fibrosis were found in 90% of untreated hearts, which were significantly reduced in the E, L, and EL groups. A strong correlation between the abundance of patchy fibrosis and arrhythmia inducibility was found. In conclusion, chronic RAAS inhibition limited aging-related interstitial fibrosis. The lower arrhythmogeneity of treated mice was directly correlated to the reduced amount of patchy fibrosis.


Cardiovascular Research | 2009

Combined reduction of intercellular coupling and membrane excitability differentially affects transverse and longitudinal cardiac conduction

Mera Stein; Toon A.B. van Veen; Carol Ann Remme; Mohamed Boulaksil; Maartje Noorman; Leonie van Stuijvenberg; Roel van der Nagel; Connie R. Bezzina; Richard N.W. Hauer; Jacques M.T. de Bakker; Harold V.M. van Rijen

AIMS Reduced excitability and gap junction expression are commonly found in electrically remodelled diseased hearts, but their contribution to slow conduction and arrhythmias is unclear. In this study, we have investigated the effect of isolated and combined reductions in membrane excitability and intercellular coupling on impulse propagation and arrhythmogeneity in genetically modified mice. METHODS AND RESULTS Cx43 and Scn5a(1798insD/+) heterozygous (HZ) mice were crossbred to create a mixed offspring: wild-type (WT, n = 15), Cx43 HZ (n = 14), Scn5a(1798insD/+) (Scn5a) HZ (n = 17), and Cx43/Scn5a(1798insD/+) (Cx43/Scn5a) HZ (n = 15) mice. After ECG recording, epicardial activation mapping (208 recording sites) was performed on Langendorff-perfused hearts. Arrhythmia inducibility was tested by one to three premature stimuli and burst pacing. Conduction velocity longitudinal (CV(L)) and transverse (CV(T)) to fibre orientation and dispersion of conduction were determined during S1-S1 pacing (150 ms). Connexin43 (Cx43) and sodium channel Nav1.5 protein expression and myocardial tissue collagen content were determined by immunohistology. Compared with WT animals, P, QRS, and QTc intervals were prolonged in Scn5a HZ and Cx43/Scn5a HZ, but not in Cx43 HZ animals. Scn5a HZ mice showed decreased CV(L) in right ventricle (RV) but not in left ventricle compared with WT. In the RV of Cx43/Scn5a HZ, CV(T) was reduced, but CV(L) was not different from WT. Arrhythmia inducibility was low and not increased in either single- or double-mutant mice. CONCLUSION Reduction of both electrical coupling and excitability results in normal conduction velocity parallel to fibre orientation but in pronounced conduction slowing transverse to fibre orientation in RV only, although this does not affect arrhythmogeneity.


European Journal of Heart Failure | 2010

Heterogeneous Connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias

Mohamed Boulaksil; Stephan K.G. Winckels; Markus A. Engelen; Mera Stein; Toon A.B. van Veen; John A. Jansen; André C. Linnenbank; Marti F.A. Bierhuizen; W. Antoinette Groenewegen; Matthijs F.M. van Oosterhout; J. H. Kirkels; Nicolaas de Jonge; András Varró; Marc A. Vos; Jacques M.T. de Bakker; Harold V.M. van Rijen

Sudden arrhythmogenic cardiac death is a major cause of mortality in patients with congestive heart failure (CHF). To investigate determinants of the increased arrhythmogenic susceptibility, we studied cardiac remodelling and arrhythmogenicity in CHF patients and in a mouse model of chronic pressure overload.


Heart Rhythm | 2008

Dominant arrhythmia vulnerability of the right ventricle in senescent mice

Mera Stein; Maartje Noorman; Toon A.B. van Veen; Eva Herold; Markus A. Engelen; Mohamed Boulaksil; Gudrun Antoons; John A. Jansen; Matthijs F.M. van Oosterhout; Richard N.W. Hauer; Jacques M.T. de Bakker; Harold V.M. van Rijen

BACKGROUND Several cardiac disorders affect the right ventricle (RV) and left ventricle (LV) equally, but nevertheless, RV vulnerability to conduction slowing and arrhythmias exceeds that of the LV. OBJECTIVE This study sought to assess the mechanism of dominant RV arrhythmia vulnerability in senescent mice as a model of general reduced myocardial integrity. METHODS Epicardial ventricular activation mapping was performed on senescent (22 months) and adult (3 months) Langendorff perfused mouse hearts. Arrhythmia inducibility was tested by programmed stimulation. Conduction velocity longitudinal and transversal (CVT) to fiber orientation, conduction heterogeneity, and effective refractory period were determined. Subsequently, hearts were processed for immunohistochemistry, Western blotting, and Sirius red staining. RESULTS In senescent RV, but not LV, CVT was reduced and wavelength decreased, whereas anisotropic ratio and conduction heterogeneity increased. Arrhythmias, based on anisotropic reentry, were induced in 55% of senescent hearts only and predominantly in RV. In senescent mice, Connexin 43 (Cx43) and Cardiac Sodium Channel (Nav1.5) were decreased and interstitial fibrosis increased comparably in RV and LV. However, in senescent mice, heterogeneously distributed patches of replacement fibrosis were present throughout the entire RV myocardium, but only in midendocardium and subendocardium of LV. Cx43 expression in these areas was disrupted. CONCLUSION Widespread presence of replacement fibrosis in senescent RV compared with LV, combined with Cx43 and Nav1.5 disruption, potentiate shorter wavelength, conduction slowing, and conduction heterogeneity in RV, resulting in greater vulnerability of senescent RV to arrhythmias.


PLOS ONE | 2011

A 50% Reduction of Excitability but Not of Intercellular Coupling Affects Conduction Velocity Restitution and Activation Delay in the Mouse Heart

Mera Stein; Toon A.B. van Veen; Richard N.W. Hauer; Jacques M.T. de Bakker; Harold V.M. van Rijen

Introduction Computer simulations suggest that intercellular coupling is more robust than membrane excitability with regard to changes in and safety of conduction. Clinical studies indicate that SCN5A (excitability) and/or Connexin43 (Cx43, intercellular coupling) expression in heart disease is reduced by approximately 50%. In this retrospective study we assessed the effect of reduced membrane excitability or intercellular coupling on conduction in mouse models of reduced excitability or intercellular coupling. Methods and Results Epicardial activation mapping of LV and RV was performed on Langendorff-perfused mouse hearts having the following: 1) Reduced excitability: Scn5a haploinsufficient mice; and 2) reduced intercellular coupling: Cx43CreER(T)/fl mice, uninduced (50% Cx43) or induced (10% Cx43) with Tamoxifen. Wild type (WT) littermates were used as control. Conduction velocity (CV) restitution and activation delay were determined longitudinal and transversal to fiber direction during S1S1 pacing and S1S2 premature stimulation until the effective refractory period. In both animal models, CV restitution and activation delay in LV were not changed compared to WT. In contrast, CV restitution decreased and activation delay increased in RV during conduction longitudinal but not transverse to fiber direction in Scn5a heterozygous animals compared to WT. In contrast, a 50% reduction of intercellular coupling did not affect either CV restitution or activation delay. A decrease of 90% Cx43, however, resulted in decreased CV restitution and increased activation delay in RV, but not LV. Conclusion Reducing excitability but not intercellular coupling by 50% affects CV restitution and activation delay in RV, indicating a higher safety factor for intercellular coupling than excitability in RV.


Catheterization and Cardiovascular Interventions | 2018

Rationale and design of amphilimus sirolimus-eluting stents versus zotarolimus-eluting stents in all-comers requiring percutaneous coronary intervention (ReCre8): A multicenter randomized clinical trial

Rik Rozemeijer; Mera Stein; Peter Frambach; Michiel Voskuil; Adriaan O. Kraaijeveld; Ramón Rodríguez-Olivares; Leo Timmers; Bruno Pereira; Saskia Z.H. Rittersma; Pierfrancesco Agostoni; Pieter A. Doevendans; Pieter R. Stella

Amphilimus sirolimus‐eluting stents (A‐SES) represent a novel elution technology in the current era of drug‐eluting stents with promising results in patients with diabetes mellitus. At present no large trial has been designed to evaluate clinical outcomes of A‐SES as compared to new‐generation drug‐eluting stents in unselected patients. Accordingly, we designed this trial to evaluate clinical noninferiority of A‐SES as compared with zotarolimus‐eluting stents (ZES) in a real‐world, all‐comers setting.


Frontiers in Cardiovascular Medicine | 2016

Spatial Heterogeneity of Cx43 is an Arrhythmogenic Substrate of Polymorphic Ventricular Tachycardias during Compensated Cardiac Hypertrophy in Rats

Mohamed Boulaksil; Marti F.A. Bierhuizen; Markus A. Engelen; Mera Stein; Bart Kok; Shirley C. M. van Amersfoorth; Marc A. Vos; Harold V.M. van Rijen; Jacques M.T. de Bakker; Toon A.B. van Veen

Background Ventricular remodeling increases the propensity of ventricular tachyarrhythmias and sudden death in patients. We studied the mechanism underlying these fatal arrhythmias, electrical and structural cardiac remodeling, as well as arrhythmogeneity during early, compensated hypertrophy in a rat model of chronic pressure overload. Methods Twenty-six Wistar rats were subjected to transverse aortic constriction (TAC) (n = 13) or sham operation (n = 13). Four weeks postoperative, echo- and electrocardiography was performed. Epicardial (208 or 455 sites) and transmural (30 sites) ventricular activation mapping was performed on Langendorff perfused hearts. Subsequently, hearts were processed for (immuno)histological and molecular analyses. Results TAC rats showed significant hypertrophy with preserved left ventricular (LV) function. Epicardial conduction velocity (CV) was similar, but more dispersed in TAC. Transmural CV was slowed in TAC (37.6 ± 2.9 cm s−1) compared to sham (58.5 ± 3.9 cm s−1; P < 0.01). Sustained polymorphic ventricular tachycardias were induced from LV in 8/13 TAC and in 0/13 sham rats. During VT, electrical activation patterns showed variable sites of earliest epicardial activation and altering sites of functional conduction block. Wandering epicardial reentrant activation was sporadically observed. Collagen deposition was significantly higher in TAC compared to sham, but not different between arrhythmogenic and non-arrhythmogenic TAC animals. Connexin43 (Cx43) expression was heterogeneous with a higher prevalence of non-phosphorylated Cx43 in arrhythmogenic TAC animals. Conclusion In TAC rats with compensated cardiac hypertrophy, dispersion of conduction correlated to arrhythmogenesis, an increased heterogeneity of Cx43, and a partial substitution with non-phosphorylated Cx43. These alterations may result in the increased vulnerability to polymorphic VTs.


Heart Rhythm | 2005

Three-dimensional anatomic structure as substrate for ventricular tachycardia/ventricular fibrillation

Jacques M.T. de Bakker; Mera Stein; Harold V.M. van Rijen


Netherlands Heart Journal | 2006

Conduction reserve and arrhythmias.

Mera Stein; Mohamed Boulaksil; Markus A. Engelen; T. A. B. van Veen; R.N.W. Hauer; J. M. T. de Bakker; H.V.M. van Rijen

Collaboration


Dive into the Mera Stein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge