Mercè Pamblanco
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mercè Pamblanco.
Journal of Biological Chemistry | 2006
Pierre-Marie Dehé; Bernhard Dichtl; Daniel Schaft; Assen Roguev; Mercè Pamblanco; Régine Lebrun; Alfonso Rodríguez-Gil; Msau Mkandawire; Katarina Landsberg; Anna Shevchenko; Andrej Shevchenko; Lorena E. Rosaleny; Vicente Tordera; Sebastián Chávez; A. Francis Stewart; Vincent Géli
Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc1 strongly interacts with itself. Inactivation of either Bre2 or Sdc1 has very similar effects. Neither is required for complex integrity, and their removal results in an increase of H3K4 mono- and dimethylation and a severe decrease of trimethylation at the 5′ end of active coding regions but a decrease of H3K4 dimethylation at the 3′ end of coding regions. Cells lacking Spp1 have a reduced amount of Set1 and retain a fraction of trimethylated H3K4, whereas cells lacking Shg1 show slightly elevated levels of both di- and trimethylation. Set1C associates with both serine 5- and serine 2-phosphorylated forms of polymerase II, indicating that the association persists to the 3′ end of transcribed genes. Taken together, our results suggest that Set1C subunits stimulate Set1 catalytic activity all along active genes.
Journal of Biological Chemistry | 1998
Ana Ruiz-Garcia; Ramon Sendra; Mónica Galiana; Mercè Pamblanco; José E. Pérez-Ortín; Vicente Tordera
We have analyzed the histone acetyltransferase enzymes obtained from a series of yeast hat1,hat2, and gcn5 single mutants andhat1,hat2 and hat1,gcn5 double mutants. Extracts prepared from both hat1 and hat2mutant strains specifically lack the following two histone acetyltransferase activities: the well known cytoplasmic type B enzyme and a free histone H4-specific histone acetyltransferase located in the nucleus. The catalytic subunits of both cytoplasmic and nuclear enzymes have identical molecular masses (42 kDa), the same as that of HAT1. However, the cytoplasmic complex has a molecular mass (150 kDa) greater than that of the nuclear complex (110 kDa). The possible functions of HAT1 and HAT2 in the yeast nucleus are discussed. In addition, we have detected a yeast histone acetyltransferase not previously described, designated HAT-A4. This enzyme is located in the nucleus and is able to acetylate free and nucleosome-bound histones H3 and H4. Finally, we show that the hat1,gcn5 double mutant is viable and does not exhibit a new phenotype, thus suggesting the existence of several histone acetyltransferases with overlapping functions.
FEBS Letters | 1997
Ana Ruiz-Garcia; Ramon Sendra; Mercè Pamblanco; Vicente Tordera
© 1997 Federation of European Biochemical Societies.
FEBS Letters | 2001
Mercè Pamblanco; Ana Poveda; Ramon Sendra; Susana Rodríguez-Navarro; José E. Pérez-Ortín; Vicente Tordera
Using a yeast two‐hybrid assay we detected an interaction between the N‐terminal region of histone H4 (amino acids 1–59) and a fragment of the bromodomain factor 1 protein (Bdf1p) (amino acids 304–571) that includes one of the two bromodomains of this protein. No interaction was observed using fragments of histone H4 sequence smaller than the first 59 amino acids. Recombinant Bdf1p (rBdf1p) demonstrates binding affinity for histones H4 and H3 but not H2A and H2B in vitro. Moreover, rBdf1p is able to bind histones H3 and H4 having different degrees of acetylation. Finally, we have not detected histone acetyltransferase activity associated with Bdf1p.
Nucleus | 2014
Mercè Pamblanco; Paula Oliete‐Calvo; Encar García-Oliver; M. Luz Valero; Manuel M. Sánchez del Pino; Susana Rodríguez-Navarro
Anti-silencing function 1 (Asf1) is a conserved key eukaryotic histone H3/H4 chaperone that participates in a variety of DNA and chromatin-related processes. These include the assembly and disassembly of histones H3 and H4 from chromatin during replication, transcription, and DNA repair. In addition, Asf1 is required for H3K56 acetylation activity dependent on histone acetyltransferase Rtt109. Thus, Asf1 impacts on many aspects of DNA metabolism. To gain insights into the functional links of Asf1 with other cellular machineries, we employed mass spectrometry coupled to tandem affinity purification (TAP) to investigate novel physical interactions of Asf1. Under different TAP-MS analysis conditions, we describe a new repertoire of Asf1 physical interactions and novel Asf1 post-translational modifications as ubiquitination, methylation and acetylation that open up new ways to regulate Asf1 functions. Asf1 co-purifies with several subunits of the TREX-2, SAGA complexes, and with nucleoporins Nup2, Nup60, and Nup57, which are all involved in transcription coupled to mRNA export in eukaryotes. Reciprocally, Thp1 and Sus1 interact with Asf1. Albeit mRNA export and GAL1 transcription are not affected in asf1Δ a strong genetic interaction exists between ASF1 and SUS1. Notably, supporting a functional link between Asf1 and TREX-2, both Sus1 and Thp1 affect the levels of Asf1-dependent histone H3K56 acetylation and histone H3 and H4 incorporation onto chromatin. Additionally, we provide evidence for a role of Asf1 in histone H2B ubiquitination. This work proposes a functional link between Asf1 and TREX-2 components in histone metabolism at the vicinity of the nuclear pore complex.
FEBS Open Bio | 2014
Sara Vicente-Muñoz; Paco Romero; Lorena Magraner-Pardo; Celia P. Martínez-Jiménez; Vicente Tordera; Mercè Pamblanco
Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi‐protein complexes. The Sas3‐dependent NuA3 complex has received less attention than other histone acetyltransferases (HAT), such as Gcn5‐dependent complexes. Here, we report our analysis of Sas3p‐interacting proteins using tandem affinity purification (TAP), coupled with mass spectrometry. This analysis revealed Pdp3p, a recently described component of NuA3, to be one of the most abundant Sas3p‐interacting proteins. The PDP3 gene, was TAP‐tagged and protein complex purification confirmed that Pdp3p co‐purified with the NuA3 protein complex, histones, and several transcription‐related and chromatin remodelling proteins. Our results also revealed that the protein complexes associated with Sas3p presented HAT activity even in the absence of Gcn5p and vice versa. We also provide evidence that Sas3p cannot substitute Gcn5p in acetylation of lysine 9 in histone H3 in vivo. Genome‐wide occupancy of Sas3p using ChIP‐on‐chip tiled microarrays showed that Sas3p was located preferentially within the 5′‐half of the coding regions of target genes, indicating its probable involvement in the transcriptional elongation process. Hence, this work further characterises the function and regulation of the NuA3 complex by identifying novel post‐translational modifications in Pdp3p, additional Pdp3p‐co‐purifying chromatin regulatory proteins involved in chromatin‐modifying complex dynamics and gene regulation, and a subset of genes whose transcriptional elongation is controlled by this complex.
Journal of Proteomics | 2016
M. Luz Valero; Ramon Sendra; Mercè Pamblanco
Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction.
Data in Brief | 2016
M. Luz Valero; Ramon Sendra; Mercè Pamblanco
Tandem affinity purification method (TAP) allows the efficient purification of native protein complexes which incorporate a target protein fused with the TAP tag. Purified multiprotein complexes can then be subjected to diverse types of proteomic analyses. Here we describe the data acquired after applying the TAP strategy on histones H3 and H4 coupled with mass spectrometry to identify associated proteins and protein post-translational modifications in the budding yeast, Saccharomyces cerevisiae. The mass spectrometry dataset described here consists of 14 files generated from four different analyses in a 5600 Triple TOF (Sciex) by information‐dependent acquisition (IDA) LC–MS/MS. The above files contain information about protein identification, protein relative abundance, and PTMs identification. The instrumental raw data from these files has been also uploaded to the ProteomeXchange Consortium via the PRIDE partner repository, with the dataset identifier PRIDE: PXD002671 and http://dx.doi.org/10.6019/PXD002671. These data are discussed and interpreted in http://dx.doi.org/10.1016/j.jprot.2016.01.004. Valero et al. (2016) [1].
Journal of Biological Chemistry | 2004
Ana Poveda; Mercè Pamblanco; Stefan T. Tafrov; Vicente Tordera; Rolf Sternglanz; Ramon Sendra
Journal of Molecular Biology | 2005
Pierre-Marie Dehé; Mercè Pamblanco; Pierre Luciano; Régine Lebrun; Daniéle Moinier; Ramon Sendra; Alain Verreault; Vicente Tordera; Vincent Géli