Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mercè Vall-Llossera is active.

Publication


Featured researches published by Mercè Vall-Llossera.


IEEE Transactions on Geoscience and Remote Sensing | 2011

Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data

Maria Piles; Adriano Camps; Mercè Vall-Llossera; Ignasi Corbella; Rocco Panciera; Christoph Rüdiger; Yann Kerr; Jeffrey P. Walker

A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called “universal triangle” concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (Ts), to the soil moisture status. It combines the accuracy of SMOS observations with the high spatial resolution of VIS/IR satellite data into accurate soil moisture estimates at high spatial resolution. In preparation for the SMOS launch, the algorithm was tested using observations of the UPC Airborne RadIomEter at L-band (ARIEL) over the Soil Moisture Measurement Network of the University of Salamanca (REMEDHUS) in Zamora (Spain), and LANDSAT imagery. Results showed fairly good agreement with ground-based soil moisture measurements and illustrated the strength of the link between VIS/IR satellite data and soil moisture status. Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed. The method has been applied to some of the first SMOS images acquired during the commissioning phase and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Results show that the soil moisture variability is effectively captured at 10 and 1 km spatial scales without a significant degradation of the root mean square error.


IEEE Transactions on Geoscience and Remote Sensing | 2004

The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval

Adriano Camps; Jordi Font; Mercè Vall-Llossera; Carolina Gabarró; Ignasi Corbella; Nuria Duffo; Francesc Torres; S. Blanch; Albert Aguasca; Ramon Villarino; L. Enrique; J. Miranda; Juan José Arenas; A. Julià; J. Etcheto; Vicente Caselles; Alain Weill; Jacqueline Boutin; Stephanie Contardo; Raquel Niclòs; Raúl Rivas; Steven C. Reising; Patrick Wursteisen; Michael Berger; Manuel Martin-Neira

Soil Moisture and Ocean Salinity (SMOS) is an Earth Explorer Opportunity Mission from the European Space Agency with a launch date in 2007. Its goal is to produce global maps of soil moisture and ocean salinity variables for climatic studies using a new dual-polarization L-band (1400-1427 MHz) radiometer Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). SMOS will have multiangular observation capability and can be optionally operated in full-polarimetric mode. At this frequency the sensitivity of the brightness temperature (T/sub B/) to the sea surface salinity (SSS) is low: 0.5 K/psu for a sea surface temperature (SST) of 20/spl deg/C, decreasing to 0.25 K/psu for a SST of 0/spl deg/C. Since other variables than SSS influence the T/sub B/ signal (sea surface temperature, surface roughness and foam), the accuracy of the SSS measurement will degrade unless these effects are properly accounted for. The main objective of the ESA-sponsored Wind and Salinity Experiment (WISE) field experiments has been the improvement of our understanding of the sea state effects on T/sub B/ at different incidence angles and polarizations. This understanding will help to develop and improve sea surface emissivity models to be used in the SMOS SSS retrieval algorithms. This paper summarizes the main results of the WISE field experiments on sea surface emissivity at L-band and its application to a performance study of multiangular sea surface salinity retrieval algorithms. The processing of the data reveals a sensitivity of T/sub B/ to wind speed extrapolated at nadir of /spl sim/0.23-0.25 K/(m/s), increasing at horizontal (H) polarization up to /spl sim/0.5 K/(m/s), and decreasing at vertical (V) polarization down to /spl sim/-0.2 K/(m/s) at 65/spl deg/ incidence angle. The sensitivity of T/sub B/ to significant wave height extrapolated to nadir is /spl sim/1 K/m, increasing at H-polarization up to /spl sim/1.5 K/m, and decreasing at V-polarization down to -0.5 K/m at 65/spl deg/. A modulation of the instantaneous brightness temperature T/sub B/(t) is found to be correlated with the measured sea surface slope spectra. Peaks in T/sub B/(t) are due to foam, which has allowed estimates of the foam brightness temperature and, taking into account the fractional foam coverage, the foam impact on the sea surface brightness temperature. It is suspected that a small azimuthal modulation /spl sim/0.2-0.3 K exists for low to moderate wind speeds. However, much larger values (4-5 K peak-to-peak) were registered during a strong storm, which could be due to increased foam. These sensitivities are satisfactorily compared to numerical models, and multiangular T/sub B/ data have been successfully used to retrieve sea surface salinity.


IEEE Transactions on Geoscience and Remote Sensing | 2011

Land Geophysical Parameters Retrieval Using the Interference Pattern GNSS-R Technique

Nereida Rodriguez-Alvarez; Adriano Camps; Mercè Vall-Llossera; Xavier Bosch-Lluis; Alessandra Monerris; Isaac Ramos-Perez; Enric Valencia; Juan Fernando Marchan-Hernandez; G. Baroncini-Turricchia; Carlos Perez-Gutierrez; Nilda Sánchez

In the past years, the scientific community has placed a special interest in remotely sensing soil moisture and vegetation parameters. Radiometry and radar techniques have been widely used for years. Global Navigation Satellite Systems opportunity signals Reflected (GNSS-R) over the earths surface are younger, but they have already shown their potential to perform these observations. This paper presents a GNSS-R technique, based on Global Positioning System (GPS) measurements, that allows the retrieval of several geophysical parameters from land surfaces. This technique measures the power of the interference signal between the direct GPS signal and the reflected one after scattering over the land, so it is called Interference Pattern Technique (IPT). This paper presents the results obtained after applying the IPT for topography, soil moisture, and vegetation height retrievals over vegetation-covered soils.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2014

A Downscaling Approach for SMOS Land Observations: Evaluation of High-Resolution Soil Moisture Maps Over the Iberian Peninsula

Maria Piles; Nilda Sánchez; Mercè Vall-Llossera; Adriano Camps; Justino Martínez; Verónica González-Gambau

The ESAs Soil Moisture and Ocean Salinity (SMOS) mission is the first satellite devoted to measure the Earths surface soil moisture. It has a spatial resolution of ~ 40 km and a 3-day revisit. In this paper, a downscaling algorithm is presented as a new ability to obtain multiresolution soil moisture estimates from SMOS using visible-to-infrared remotely sensed observations. This algorithm is applied to combine 2 years of SMOS and MODIS Terra/Aqua data over the Iberian Peninsula into fine-scale (1 km) soil moisture estimates. Disaggregated soil moisture maps are compared to 0-5 cm ground-based measurements from the REMEDHUS network. Three matching strategies are employed: 1) a comparison at 40 km spatial resolution is undertaken to ensure SMOS sensitivity is preserved in the downscaled maps; 2) the spatio-temporal correlation of downscaled maps is analyzed through comparison with point-scale observations; and 3) high-resolution maps and ground-based observations are aggregated per land-use to identify spatial patterns related with vegetation activity and soil type. Results show that the downscaling method improves the spatial representation of SMOS coarse soil moisture estimates while maintaining temporal correlation and root mean squared differences with ground-based measurements. The dynamic range of in situ soil moisture measurements is reproduced in the high-resolution maps, including stations with different mean soil wetness conditions. Downscaled maps capture the soil moisture dynamics of general land uses, with the exception of irrigated crops. This evaluation study supports the use of this downscaling approach to enhance the spatial resolution of SMOS observations over semi-arid regions such as the Iberian Peninsula.


IEEE Transactions on Geoscience and Remote Sensing | 2005

The emissivity of foam-covered water surface at L-band: theoretical modeling and experimental results from the FROG 2003 field experiment

Adriano Camps; Mercè Vall-Llossera; Ramon Villarino; Nicolas Reul; Bertrand Chapron; Ignasi Corbella; Nuria Duffo; Francesc Torres; J. Miranda; Roberto Sabia; Alessandra Monerris; Rubén Rodriguez

Sea surface salinity can be measured by microwave radiometry at L-band (1400-1427 MHz). This frequency is a compromise between sensitivity to the salinity, small atmospheric perturbation, and reasonable pixel resolution. The description of the ocean emission depends on two main factors: (1) the sea water permittivity, which is a function of salinity, temperature, and frequency, and (2) the sea surface state, which depends on the wind-induced wave spectrum, swell, and rain-induced roughness spectrum, and by the foam coverage and its emissivity. This study presents a simplified two-layer emission model for foam-covered water and the results of a controlled experiment to measure the foam emissivity as a function of salinity, foam thickness, incidence angle, and polarization. Experimental results are presented, and then compared to the two-layer foam emission model with the measured foam parameters used as input model parameters. At 37 psu salt water the foam-induced emissivity increase is /spl sim/0.007 per millimeter of foam thickness (extrapolated to nadir), increasing with increasing incidence angles at vertical polarization, and decreasing with increasing incidence angles at horizontal polarization.


IEEE Transactions on Geoscience and Remote Sensing | 2004

Sun effects in 2-D aperture synthesis radiometry imaging and their cancelation

Adriano Camps; Mercè Vall-Llossera; Nuria Duffo; Miguel Zapata; Ignasi Corbella; Francesc Torres; Valentin Barrena

The Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) is the single payload of the European Space Agencys (ESA) Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Opportunity mission. MIRAS will be the first two-dimensional aperture synthesis radiometer for Earth observation. Two-dimensional aperture synthesis radiometers can generate brightness temperature images by a Fourier synthesis process without mechanical antenna steering. To do so and have the necessary wide swath for Earth observation, the array is formed by small and low directive antennas, which do not attenuate enough bright noise sources that may interfere with the measurements. This study analyzes the impact of the radio-frequency emission from the Sun in the SMOS mission, reviews the basic image reconstruction algorithms, and proposes a technique to minimize Sun effects.


IEEE Transactions on Geoscience and Remote Sensing | 2009

Brightness-Temperature Retrieval Methods in Synthetic Aperture Radiometers

Ignasi Corbella; Francesc Torres; Adriano Camps; Nuria Duffo; Mercè Vall-Llossera

Brightness-temperature retrieval techniques for synthetic aperture radiometers are reviewed. Three different approaches to combine measured visibility and antenna temperatures, along with instrument characterization data, into a general equation to invert are presented. Discretization and windowing techniques are briefly discussed, and formulas for reciprocal grids using rectangular and hexagonal samplings are given. Two known techniques are used to invert the equation, namely, inverse Fourier transform and G -matrix pseudoinverse. The proposed preprocessing approaches combined with these two inversion methods are implemented with real data measured by an airborne Y-shaped interferometric radiometer over land and water, and are compared. The images indicate that best results are obtained when inverting an incremental visibility obtained after substracting a term that includes the individual antenna temperatures, the physical temperatures of the receivers, and a flat-target response directly measured from cold-sky looks.


IEEE Geoscience and Remote Sensing Letters | 2005

Polarimetric formulation of the visibility function equation including cross-polar antenna patterns

Adriano Camps; Ignasi Corbella; Francesc Torres; Mercè Vall-Llossera; Nuria Duffo

The European Space Agencys Soil Moisture and Ocean Salinity (SMOS) mission will be the first one using two-dimensional aperture synthesis radiometry for Earth observation. This study presents the formulation that relates instrument observables and brightness temperature maps including cross-polar antenna voltage patterns, which may be also different from element to element. Finally, the radiometric accuracy degradation if cross-polar patterns are neglected in the image reconstruction is studied.


International Journal of Remote Sensing | 2004

Determination of sea surface salinity and wind speed by L-band microwave radiometry from a fixed platform

Carolina Gabarró; Mercè Vall-Llossera; Jordi Font; Adriano Camps

In May 1999, the European Space Agency (ESA) selected SMOS (Soil Moisture and Ocean Salinity) as an Earth Explorer Opportunity mission. One of its goals is the generation of global sea surface salinity (SSS) maps. The satellite sensor is an L-band interferometric radiometer with full-polarimetric capability called MIRAS. The retrieval of SSS from microwave measurements is based on the fact that the brightness temperature (TB ) of seawater is a function of the dielectric constant, temperature and sea surface state (roughness, foam…). The sensitivity of TB to SSS is maximum at L-band, but it is necessary to quantify the other effects to have reliable SSS retrieval. In order to improve the present understanding of these effects on TB , ESA sponsored the Wind and Salinity Experiment (WISE) 2000 and 2001 field campaigns. These experimental results are of great importance for the development of sea surface emissivity models that will be used in the future SMOS SSS retrieval algorithms. This paper presents the influence of the emissivity models on the derived SSS from the data obtained in both campaigns. It also presents the impact on the retrieved SSS of using in situ measured or satellite derived wind information, or even simultaneously estimating the wind speed from the measured multi-angular TB .


IEEE Transactions on Geoscience and Remote Sensing | 2010

Determination of the Sea Surface Salinity Error Budget in the Soil Moisture and Ocean Salinity Mission

Roberto Sabia; Adriano Camps; Marco Talone; Mercè Vall-Llossera; Jordi Font

The Soil Moisture and Ocean Salinity mission will provide sea surface salinity maps over the oceans, beginning in late 2009. In this paper an ocean salinity error budget is described, an analysis needed to identify the magnitude of the error sources associated with the retrieval. Instrumental, external noise sources, and geophysical errors have been analyzed, stressing their relative impact. This paper includes results from previous studies, addressing the impact of multisource auxiliary sea surface temperature and wind speed data on the final salinity error. It provides, moreover, a sensitivity analysis to the uncertainty of the auxiliary salinity field. Salinity retrieval has been addressed in a wide set of configurations of the inversion algorithm.

Collaboration


Dive into the Mercè Vall-Llossera's collaboration.

Top Co-Authors

Avatar

Adriano Camps

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Maria Piles

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ignasi Corbella

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Nuria Duffo

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Francesc Torres

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Alessandra Monerris

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramon Villarino

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Verónica González-Gambau

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carolina Gabarró

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge