Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mercedes Jiménez is active.

Publication


Featured researches published by Mercedes Jiménez.


Journal of Biological Chemistry | 2003

Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment

José Manuel González; Mercedes Jiménez; Marisela Vélez; Jesús Mingorance; Miguel Vicente; Germán Rivas

Experimental conditions that simulate the crowded bacterial cytoplasmic environment have been used to study the assembly of the essential cell division protein FtsZ from Escherichia coli. In solutions containing a suitable concentration of physiological osmolytes, macromolecular crowding promotes the GTP-dependent assembly of FtsZ into dynamic two-dimensional polymers that disassemble upon GTP depletion. Atomic force microscopy reveals that these FtsZ polymers adopt the shape of ribbons that are one subunit thick. When compared with the FtsZ filaments observed in vitro in the absence of crowding, the ribbons show a lag in the GTPase activity and a decrease in the GTPase rate and in the rate of GTP exchange within the polymer. We propose that, in the crowded bacterial cytoplasm under assembly-promoting conditions, the FtsZ filaments tend to align forming dynamic ribbon polymers. In vivo these ribbons would fit into the Z-ring even in the absence of other interactions. Therefore, the presence of mechanisms to prevent the spontaneous assembly of the Z-ring in non-dividing cells must be invoked.


Journal of Biological Chemistry | 2013

Bacterial Division Proteins FtsZ and ZipA Induce Vesicle Shrinkage and Cell Membrane Invagination

Elisa J. Cabré; Alicia Sánchez-Gorostiaga; Paolo Carrara; Noelia Ropero; Mercedes Casanova; Pilar Palacios; Pasquale Stano; Mercedes Jiménez; Germán Rivas; Miguel Vicente

Background: Before constriction ZipA anchors FtsZ to the E. coli inner membrane as part of the cell division proto-ring. Results: Dynamic FtsZ polymers shrink ZipA-containing vesicles whereas excess of ZipA invaginates the E. coli membrane destroying the permeability barrier. Conclusion: Constriction forces can be evidenced both in bacteria and in vesicles. Significance: Defined bacterial elements reproduce division functions when assembled in vitro. Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles.


Journal of Biological Chemistry | 2011

Reconstitution and Organization of Escherichia coli Proto-ring Elements (FtsZ and FtsA) inside Giant Unilamellar Vesicles Obtained from Bacterial Inner Membranes

Mercedes Jiménez; Ariadna Martos; Miguel Vicente; Germán Rivas

We have incorporated, for the first time, FtsZ and FtsA (the soluble proto-ring proteins from Escherichia coli) into bacterial giant unilamellar inner membrane vesicles (GUIMVs). Inside the vesicles, the structural organization and spatial distribution of fluorescently labeled FtsZ and FtsA were determined by confocal microscopy. We found that, in the presence of GDP, FtsZ was homogeneously distributed in the lumen of the vesicle. In the presence of GTP analogs, FtsZ assembled inside the GUIMVs, forming a web of dense spots and fibers. Whereas isolated FtsA was found adsorbed to the inner face of GUIMVs, the addition of FtsZ together with GTP analogs resulted in its dislodgement and its association with the FtsZ fibers in the lumen, suggesting that the FtsA-membrane interaction can be modulated by FtsZ polymers. The use of this novel in vitro system to probe interactions between divisome components will help to determine the biological implications of these findings.


Biochimica et Biophysica Acta | 2012

FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks.

Pablo Mateos-Gil; Ileana F. Márquez; Pilar López-Navajas; Mercedes Jiménez; Miguel Vicente; Jesús Mingorance; Germán Rivas; Marisela Vélez

Bacteria divide by forming a contractile ring around their midcell region. FtsZ, a cytoskeletal soluble protein structurally related to tubulin, is the main component of this division machinery. It forms filaments that bundle at the inner side of the cytoplasmic membrane. These FtsZ bundles do not attach to bare lipid surfaces. In Escherichia coli they remain near the membrane surface by attaching to the membrane protein ZipA and FtsA. In order to study the structure and dynamics of the ZipA-FtsZ bundles formed on a lipid surface, we have oriented a soluble form of ZipA (sZipA), with its transmembrane domain substituted by a histidine tag, on supported lipid membranes. Atomic force microscopy has been used to visualize the polymers formed on top of this biomimetic surface. In the presence of GTP, when sZipA is present, FtsZ polymers restructure forming higher order structures. The lipid composition of the underlying membrane affects the aggregation kinetics and the shape of the structures formed. On the negatively charged E. coli lipid membranes, filaments condense from initially disperse material to form a network that is more dynamic and flexible than the one formed on phosphatidyl choline bilayers. These FtsZ-ZipA filament bundles are interconnected, retain their capacity to dynamically restructure, to fragment, to anneal and to condense laterally.


Analytical Biochemistry | 2011

Development of a homogeneous fluorescence anisotropy assay to monitor and measure FtsZ assembly in solution.

Belén Reija; Begoña Monterroso; Mercedes Jiménez; Miguel Vicente; Germán Rivas; Silvia Zorrilla

We present here a fluorescence anisotropy method for the quantification of the polymerization of FtsZ, an essential protein for cytokinesis in prokaryotes whose GTP-dependent assembly initiates the formation of the divisome complex. Using Alexa 488 labeled wild-type FtsZ as a tracer, the assay allows determination of the critical concentration of FtsZ polymerization from the dependence of the measured steady-state fluorescence anisotropy on the concentration of FtsZ. The incorporation of the labeled protein into FtsZ polymers and the lack of spectral changes on assembly were independently confirmed by time-resolved fluorescence and fluorescence correlation spectroscopy. Critical concentration values determined by this new assay are compatible with those reported previously under the same conditions by other well-established methods. As a proof of principle, data on the sensitivity of the assay to changes in FtsZ assembly in response to Mg(2+) concentration or to the presence of high concentrations of Ficoll 70 as crowding agent are shown. The proposed method is sensitive, low sample consuming, rapid, and reliable, and it can be extended to other cooperatively polymerizing systems. In addition, it can help to discover new antimicrobials that may interfere with FtsZ polymerization because it can be easily adapted to systematic screening assays.


PLOS ONE | 2012

Isolation, Characterization and Lipid-Binding Properties of the Recalcitrant FtsA Division Protein from Escherichia coli

Ariadna Martos; Begoña Monterroso; Silvia Zorrilla; Belén Reija; Carlos Alfonso; Jesús Mingorance; Germán Rivas; Mercedes Jiménez

We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures.


Mbio | 2014

Role of the FtsA C Terminus as a Switch for Polymerization and Membrane Association

Marcin Krupka; Elisa J. Cabré; Mercedes Jiménez; Germán Rivas; Ana Isabel Rico; Miguel Vicente

ABSTRACT Together with ATP, the C-terminal region of the essential streptococcal FtsA protein acts as an intramolecular switch to promote its polymerization and attachment to the membrane. During septation, FtsA is known to anchor the constricting FtsZ ring and, subsequently, the divisome to the membrane. Truncation of the C terminus of the streptococcal FtsA (FtsAΔCt) facilitates a more rapid ATP-dependent polymerization in solution than is seen with the full-length protein (FtsA+). The FtsAΔCt polymers are more organized and compact than those formed in solution by FtsA+, resembling the shape of the membrane-associated FtsA+ polymers. We find that ATP, besides being needed for polymerization, is required for the attachment of FtsA+ to lipid monolayers and to vesicle membranes. We propose a model in which the binding of ATP activates a switch favoring the polymerization of FtsA and at the same time driving the amphipathic helix at its C terminus to become attached to the membrane. Conversely, when FtsA is in the cytoplasm, the C terminus is not engaged in the attachment to the membrane, and it obstructs polymerization. ATP-dependent polymerization of FtsA inside membrane vesicles causes vesicle shrinkage, suggesting that, besides providing a membrane attachment for FtsZ, the FtsA C terminus may also introduce local alterations in the membrane to facilitate septation. IMPORTANCE FtsA is a protein needed in many bacteria to construct a septum that divides one fully grown cell, producing two daughters. We show that the region located at the C-terminal end of the Streptococcus pneumoniae FtsA protein works as a switch triggered by ATP, a molecule that stores energy. This region contains an amphipathic helix that obstructs the assembly of FtsA into polymers in the cytoplasm. In the presence of ATP, the obstruction is removed by switching the position of the helix. The switch directs the helix to the membrane and simultaneously facilitates the polymerization of the protein. The accumulation of FtsA molecules at the membrane causes distortions, an effect produced also by proteins such as MinD, MreB, and SepF that also contain amphipathic helixes as membrane attachment devices. In the case of FtsA, these distortions may also facilitate the initial events that lead to the division of bacteria. FtsA is a protein needed in many bacteria to construct a septum that divides one fully grown cell, producing two daughters. We show that the region located at the C-terminal end of the Streptococcus pneumoniae FtsA protein works as a switch triggered by ATP, a molecule that stores energy. This region contains an amphipathic helix that obstructs the assembly of FtsA into polymers in the cytoplasm. In the presence of ATP, the obstruction is removed by switching the position of the helix. The switch directs the helix to the membrane and simultaneously facilitates the polymerization of the protein. The accumulation of FtsA molecules at the membrane causes distortions, an effect produced also by proteins such as MinD, MreB, and SepF that also contain amphipathic helixes as membrane attachment devices. In the case of FtsA, these distortions may also facilitate the initial events that lead to the division of bacteria.


Environmental Microbiology | 2013

Giant vesicles: a powerful tool to reconstruct bacterial division assemblies in cell-like compartments

Mercedes Jiménez; Ariadna Martos; Elisa J. Cabré; Ana Raso; Germán Rivas

The use of artificial lipid membranes, structured as giant unilamellar vesicles (GUVs), provides the opportunity to investigate membrane-associated biological processes under defined experimental conditions. Due to their large size, they are uniquely adapted to investigate the properties and organization (in time and space) of macromolecular complexes incorporated in the vesicle interior by imaging and micro-spectroscopic techniques. Experimental methods to produce giant vesicles and to encapsulate proteins inside them are here reviewed. Previous experimental work to reconstitute elements of the bacterial division machinery in these membrane-like systems is summarized. Future challenges towards reconstructing minimal divisome assemblies in giant vesicles as cytomimetic containers are discussed.


Biophysical Reviews | 2013

Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube

Germán Rivas; Carlos Alfonso; Mercedes Jiménez; Begoña Monterroso; Silvia Zorrilla

The division of Escherichia coli is an essential process strictly regulated in time and space. It requires the association of FtsZ with other proteins to assemble a dynamic ring during septation, forming part of the functionally active division machinery, the divisome. FtsZ reversibly interacts with FtsA and ZipA at the cytoplasmic membrane to form a proto-ring, the first molecular assembly of the divisome, which is ultimately joined by the rest of the division-specific proteins. In this review we summarize the quantitative approaches used to study the activity, interactions, and assembly properties of FtsZ under well-defined solution conditions, with the aim of furthering our understanding of how the behavior of FtsZ is controlled by nucleotides and physiological ligands. The modulation of the association and assembly properties of FtsZ by excluded-volume effects, reproducing in part the natural crowded environment in which this protein has evolved to function, will be described. The subsequent studies on the reactivity of FtsZ in membrane-like systems using biochemical, biophysical, and imaging technologies are reported. Finally, we discuss the experimental challenges to be met to achieve construction of the minimum protein set needed to initiate bacterial division, without cells, in a cell-like compartment. This integrated approach, combining quantitative and synthetic strategies, will help to support (or dismiss) conclusions already derived from cellular and molecular analysis and to complete our understanding on how bacterial division works.


PLOS ONE | 2015

The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity.

Elisa J. Cabré; Begoña Monterroso; Carlos Alfonso; Alicia Sánchez-Gorostiaga; Belén Reija; Mercedes Jiménez; Miguel Vicente; Silvia Zorrilla; Germán Rivas

Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ.

Collaboration


Dive into the Mercedes Jiménez's collaboration.

Top Co-Authors

Avatar

Germán Rivas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miguel Vicente

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel López

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar

Elisa J. Cabré

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Silvia Zorrilla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Elena Lorente

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Begoña Monterroso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Alfonso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marisela Vélez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge