Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mercedes Moreno-Paz is active.

Publication


Featured researches published by Mercedes Moreno-Paz.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Gene function analysis in environmental isolates: the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans.

Victor Parro; Mercedes Moreno-Paz

A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects.


Microbial Biotechnology | 2009

Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray.

Francisco Remonsellez; F. Galleguillos; Mercedes Moreno-Paz; Victor Parro; Mauricio Acosta; Cecilia Demergasso

The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap.


Astrobiology | 2011

A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars.

Victor Parro; Graciela de Diego-Castilla; Mercedes Moreno-Paz; Yolanda Blanco; Patricia Cruz-Gil; J. A. Rodriguez-Manfredi; David Carlos Fernandez-Remolar; Felipe Gómez; Manuel J. Gómez; Luis Rivas; Cecilia Demergasso; Alex Echeverría; Viviana Urtuvia; Marta Ruiz-Bermejo; Miriam García-Villadangos; Marina Postigo; Mónica Sánchez-Román; G. Chong-Diaz; Javier Gómez-Elvira

The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g(-1)) or formate (76.06 μg g(-1)) as electron donors, and sulfate (15875 μg g(-1)), nitrate (13490 μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.


BMC Genomics | 2010

Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

Mercedes Moreno-Paz; Manuel J. Gómez; Aida Arcas; Victor Parro

BackgroundExtreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Río Tinto (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum) and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community.ResultsTotal RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB), synthesis of cell wall structures (lnt, murA, murB), specific proteases (clpX/clpP), stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL), etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA) were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively) in the acidic (pH 1.8) water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions.ConclusionsOur results indicate that the acidophilic filaments are dynamic structures in which different mechanisms for biofilm formation/dispersion are operating. Specific transcriptomic fingerprints can be inferred for both planktonic and sessile cells, having the former a more active TCA cycle, while the mixed acid fermentation process dominate in the latter. The excretion of acetate may play a relevant ecological role as a source of electron donor for heterotrophic Fe3+ reducers like some Alphaproteobacteria, Acidobacterium spp. and Sulfobacillus spp., also present in the biofilm. Additionally, acetate may have a negative effect on bioleaching by inhibiting the growth of chemolithotrophic bacteria.


Environmental Microbiology | 2008

An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA

Patricia Garrido; Elena González-Toril; Antonio García-Moyano; Mercedes Moreno-Paz; Ricardo Amils; Victor Parro

An oligonucleotide microarray that monitors prokaryotic diversity in extremely acidic environments has been developed. The oligonucleotide probes target most known acidophilic microorganisms, including members of the Nitrospira phylum, Acidithiobacillus genus, acidobacteria, sulfur reducing bacteria, Actinobacteria and Archaea of the Ferroplasma and Thermoplasma genera. The probes were tested for their specificity against the corresponding type strain by microarray hybridization using PCR-amplified fluorescent DNA of the 16S rRNA genes. The microarray was tested and validated against well-established molecular ecology techniques such as molecular cloning and sequencing and FISH by using samples obtained from a natural extremely acidic environment, the Río Tinto (SW Spain). Also, fluorescent labelled total environmental RNA from Río Tinto samples were used as targets for microarray hybridizations. This approach allowed the detection of the most metabolically active prokaryotes of the ecosystem by simultaneously checking probes against 16S and 23S rRNAs as well as other functional genes. Seasonal and spatial variations in the relative expression of specific rRNA genes have been detected between two sampling sites that differ in several physicochemical parameters, mainly iron and sulfur content.


Astrobiology | 2008

SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

Victor Parro; Patricia Fernández-Calvo; José Antonio Rodríguez Manfredi; Mercedes Moreno-Paz; Luis Rivas; Miriam García-Villadangos; Rosalba Bonaccorsi; José Eduardo González-Pastor; Olga Prieto-Ballesteros; Andrew C. Schuerger; Mark R. Davidson; Javier Gómez-Elvira; Carol R. Stoker

A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.


The ISME Journal | 2011

Metatranscriptomic analysis of extremely halophilic viral communities

Fernando Santos; Mercedes Moreno-Paz; Inmaculada Meseguer; Cristina López; Ramon Rosselló-Móra; Victor Parro; Josefa Antón

Hypersaline environments harbour the highest number of viruses reported for aquatic environments. In crystallizer ponds from solar salterns, haloviruses coexist with extremely halophilic Archaea and Bacteria and present a high diversity although little is known about their activity. In this work, we analyzed the viral expression in one crystallizer using a metatranscriptomic approach in which clones from a metaviromic library were immobilized in a microarray and used as probes against total mRNA extracted from the hypersaline community. This approach has two advantages: (i) it overcomes the fact that there is no straightforward, unambiguous way to extract viral mRNA from bulk mRNAs and (ii) it makes the sequencing of all mRNAs unnecessary. Transcriptomic data indicated that the halovirus assemblage was highly active at the time of sampling and the viral groups with the highest expression levels were those related to high GC content haloarchaea and Salinibacter representatives, which are minor components in the environment. Moreover, the changes in the viral expression pattern and in the numbers of free viral particles were analyzed after submitting the samples to two stress conditions: ultraviolet-radiation and dilution. Results showed that Archaea were more sensitive than Bacteria to these stress conditions. The overexpression in the predicted archaeal virus fraction raised and the total numbers of free viruses increased. Furthermore, we identified some very closely related viral clones, displaying single-nucleotide polymorphisms, which were expressed only under certain conditions. These clones could be part of very closely related virus genomes for which we propose the term ‘ecoviriotypes’.


Microbiology | 2000

The Bacillus subtilis 168 csn gene encodes a chitosanase with similar properties to a Streptomyces enzyme

Luis Rivas; Vı!ctor Parro; Mercedes Moreno-Paz; Rafael P. Mellado

The Bacillus subtilis 168 csn gene encodes a chitosanase. It was found that transcription of the csn gene was temporally regulated and was not subject to metabolic repression. Chitosanase synthesis was abolished in a csn mutant strain. Csn was overproduced in B. subtilis, partially purified and characterized. The deduced amino acid sequence, K(m), and optimal pH and temperature of the B. subtilis enzyme were closer to those of a chitosanase from Streptomyces sp. N174 than to those of chitosanases from other Bacillus strains.


Environmental Microbiology | 2012

Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica)

Yolanda Blanco; Olga Prieto-Ballesteros; Manuel J. Gómez; Mercedes Moreno-Paz; Miriam García-Villadangos; J. A. Rodriguez-Manfredi; Patricia Cruz-Gil; Mónica Sánchez-Román; Luis Rivas; Victor Parro

In this study we examined the microbial community composition and operating metabolisms on the surface and in the permafrost of Deception Island, (Antarctica) with an on site antibody microarray biosensor. Samples (down to a depth of 4.2 m) were analysed with LDChip300 (Life Detector Chip), an immunosensor containing more than 300 antibodies targeted to bacterial and archaeal antigens. The immunograms showed positive antigen-antibody reactions in all surface samples (lichens, pyroclasts) and the top layer of the permafrost. The results indicated the presence of exopolysaccharides, bacteria belonging to the Alpha-, Delta- and Gammaproteobacteria, Bacteroidetes, Gram-positive Actinobacteria and Firmicutes, as well as archaeal species, most probably Methanobacterium spp. Positive reactions with antibodies to proteins and peptides revealed the presence of nitrogen fixation (NifHD, GlnB, HscA), methanogenic (McrB), iron homeostasis and iron scavenging (ferritins and DPS proteins) proteins, as well as ABC transporters, which indicated that these processes were operating at the time of sampling. These results were validated with other molecular ecology techniques such as oligonucleotide microarrays, 16S bacterial rRNA gene sequence analysis, aerobic viable counts and microscopy. Molecular ecology results showed a differentiated pattern along the depth of the drill, being the top active layer the most diverse, with Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes and the phototrophs Cyanobacteria and Chloroflexi as dominant groups. Actinobacteria and Firmicutes were dominant in depths from 0.5 to 2 m, and Betaproteobacteria from 3 to 4.2 m. The geochemical analysis revealed the presence of low molecular weight organic acids (acetate, formate) which could be used by microorganisms as energy sources for sulfate, nitrate and metal reduction under anaerobic conditions.


Astrobiology | 2011

Classification of Modern and Old Río Tinto Sedimentary Deposits Through the Biomolecular Record Using a Life Marker Biochip: Implications for Detecting Life on Mars

Victor Parro; David Carlos Fernandez-Remolar; J. A. Rodriguez-Manfredi; Patricia Cruz-Gil; Luis Rivas; Marta Ruiz-Bermejo; Mercedes Moreno-Paz; Miriam García-Villadangos; David Gómez-Ortiz; Yolanda Blanco-López; César Menor-Salván; Olga Prieto-Ballesteros; Javier Gómez-Elvira

The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5 g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.

Collaboration


Dive into the Mercedes Moreno-Paz's collaboration.

Top Co-Authors

Avatar

Victor Parro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis Rivas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miriam García-Villadangos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. A. Rodriguez-Manfredi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patricia Cruz-Gil

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena González-Toril

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier Gómez-Elvira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Yolanda Blanco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuel J. Gómez

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge