Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yolanda Blanco is active.

Publication


Featured researches published by Yolanda Blanco.


Astrobiology | 2011

A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars.

Victor Parro; Graciela de Diego-Castilla; Mercedes Moreno-Paz; Yolanda Blanco; Patricia Cruz-Gil; J. A. Rodriguez-Manfredi; David Carlos Fernandez-Remolar; Felipe Gómez; Manuel J. Gómez; Luis Rivas; Cecilia Demergasso; Alex Echeverría; Viviana Urtuvia; Marta Ruiz-Bermejo; Miriam García-Villadangos; Marina Postigo; Mónica Sánchez-Román; G. Chong-Diaz; Javier Gómez-Elvira

The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g(-1)) or formate (76.06 μg g(-1)) as electron donors, and sulfate (15875 μg g(-1)), nitrate (13490 μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.


Environmental Microbiology | 2012

Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica)

Yolanda Blanco; Olga Prieto-Ballesteros; Manuel J. Gómez; Mercedes Moreno-Paz; Miriam García-Villadangos; J. A. Rodriguez-Manfredi; Patricia Cruz-Gil; Mónica Sánchez-Román; Luis Rivas; Victor Parro

In this study we examined the microbial community composition and operating metabolisms on the surface and in the permafrost of Deception Island, (Antarctica) with an on site antibody microarray biosensor. Samples (down to a depth of 4.2 m) were analysed with LDChip300 (Life Detector Chip), an immunosensor containing more than 300 antibodies targeted to bacterial and archaeal antigens. The immunograms showed positive antigen-antibody reactions in all surface samples (lichens, pyroclasts) and the top layer of the permafrost. The results indicated the presence of exopolysaccharides, bacteria belonging to the Alpha-, Delta- and Gammaproteobacteria, Bacteroidetes, Gram-positive Actinobacteria and Firmicutes, as well as archaeal species, most probably Methanobacterium spp. Positive reactions with antibodies to proteins and peptides revealed the presence of nitrogen fixation (NifHD, GlnB, HscA), methanogenic (McrB), iron homeostasis and iron scavenging (ferritins and DPS proteins) proteins, as well as ABC transporters, which indicated that these processes were operating at the time of sampling. These results were validated with other molecular ecology techniques such as oligonucleotide microarrays, 16S bacterial rRNA gene sequence analysis, aerobic viable counts and microscopy. Molecular ecology results showed a differentiated pattern along the depth of the drill, being the top active layer the most diverse, with Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes and the phototrophs Cyanobacteria and Chloroflexi as dominant groups. Actinobacteria and Firmicutes were dominant in depths from 0.5 to 2 m, and Betaproteobacteria from 3 to 4.2 m. The geochemical analysis revealed the presence of low molecular weight organic acids (acetate, formate) which could be used by microorganisms as energy sources for sulfate, nitrate and metal reduction under anaerobic conditions.


Environmental Microbiology | 2011

Graph-based deconvolution analysis of multiplex sandwich microarray immunoassays: applications for environmental monitoring.

Luis Rivas; Jacobo Aguirre; Yolanda Blanco; Elena González-Toril; Victor Parro

The sandwich microarray immunoassay (SMI) is a powerful technique for the analysis and characterization of environmental samples, from the identification of microorganisms to specific bioanalytes. As the number of antibodies increases, however, unspecific binding and cross-reactivity can become a problem. To cope with such difficulties, we present here the concept of antibody graph associated to a sandwich antibody microarray. Antibody graphs give valuable information about the antibody cross-reactivity network and all the players involved in the sandwich format: capturing and tracer antibodies, the antigenic sample and the degree of cross-reactivity between antibodies. Making use of the information contained in the antibody graph, we have developed a deconvolution method that disentangles the antibody cross-reactivity events and gives qualitative information about the composition of the experimental sample under study. We have validated the method by using a 66 antibody-containing microarray to describe known antigenic mixtures as well as natural environmental samples characterized by 16S-RNA gene phylogenetic analysis. The application of our antibody graph and deconvolution method allowed us to discriminate between true specific antigen-antibody reactions and spurious signals on a microarray designed for environmental monitoring.


PLOS ONE | 2014

Deciphering the Prokaryotic Community and Metabolisms in South African Deep-Mine Biofilms through Antibody Microarrays and Graph Theory

Yolanda Blanco; Luis Rivas; Antonio García-Moyano; Jacobo Aguirre; Patricia Cruz-Gil; Arantxa Palacín; Esta van Heerden; Victor Parro

In the South African deep mines, a variety of biofilms growing in mine corridor walls as water seeps from intersections or from fractures represents excellent proxies for deep-subsurface environments. However, they may be greatly affected by the oxygen inputs through the galleries of mining activities. As a consequence, the interaction between the anaerobic water coming out from the walls with the oxygen inputs creates new conditions that support rich microbial communities. The inherent difficulties for sampling these delicate habitats, together with transport and storage conditions may alter the community features and composition. Therefore, the development of in situ monitoring methods would be desirable for quick evaluation of the microbial community. In this work, we report the usefulness of an antibody-microarray (EMChip66) immunoassay for a quick check of the microbial diversity of biofilms located at 1.3 km below surface within the Beatrix deep gold mine (South Africa). In addition, a deconvolution method, previously described and used for environmental monitoring, based on graph theory and applied on antibody cross-reactivity was used to interpret the immunoassay results. The results were corroborated and further expanded by 16S rRNA gene sequencing analysis. Both culture-independent techniques coincided in detecting features related to aerobic sulfur-oxidizers, aerobic chemoorganotrophic Alphaproteobacteria and metanotrophic Gammaproteobacteria. 16S rRNA gene sequencing detected phylotypes related to nitrate-reducers and anaerobic sulfur-oxidizers, whereas the EMChip66 detected immunological features from methanogens and sulfate-reducers. The results reveal a diverse microbial community with syntrophic metabolisms both anaerobic (fermentation, methanogenesis, sulphate and nitrate reduction) and aerobic (methanotrophy, sulphur oxidation). The presence of oxygen-scavenging microbes might indicate that the system is modified by the artificial oxygen inputs from the mine galleries.


Environmental Science & Technology | 2015

CYANOCHIP: an antibody microarray for high-taxonomical-resolution cyanobacterial monitoring.

Yolanda Blanco; Antonio Quesada; Ignacio Gallardo-Carreño; Jacobo Aguirre; Victor Parro

Cyanobacteria are Gram-negative photosynthetic prokaryotes that are widespread on Earth. Eutrophication and global warming make some aquatic ecosystems behave as bioreactors that trigger rapid and massive cyanobacterial growth with remarkable economic and health consequences. Rapid and efficient early warning systems are required to support decisions by water body authorities. We have produced 17 specific antibodies to the most frequent cyanobacterial strains blooming in freshwater ecosystems, some of which are toxin producers. A sandwich-type antibody microarray immunoassay (CYANOCHIP) was developed for the simultaneous testing of any of the 17 strains, or other closely related strains, in field samples from different habitats (water, rocks, and sediments). We titrated and tested all of the antibodies in succession using a fluorescent sandwich microarray immunoassay. Although most showed high specificity, we applied a deconvolution method based on graph theory to disentangle the few existing cross-reactions. The CYANOCHIP sensitivity ranged from 10(2) to 10(4) cells mL(-1), with most antibodies detecting approximately 10(2) cells mL(-1). We validated the system by testing multiple isolates and crude natural samples from freshwater reservoirs and rocks, both in the laboratory and by in situ testing in the field. The results demonstrated that CYANOCHIP is a valuable tool for the sensitive and reliable detection of cyanobacteria for early warning and research purposes.


Frontiers in Microbiology | 2018

Watershed-Induced Limnological and Microbial Status in Two Oligotrophic Andean Lakes Exposed to the Same Climatic Scenario

Alex Echeverría-Vega; Guillermo Chong; Antonio E. Serrano; Mariela Guajardo; Olga Encalada; Victor Parro; Yolanda Blanco; Luis Rivas; Kevin C. Rose; Mercedes Moreno-Paz; José A. Luque; Nathalie A. Cabrol; Cecilia Demergasso

Laguna Negra and Lo Encañado are two oligotrophic Andean lakes forming part of the system fed by meltwater from distinct glacial tongues of the Echaurren glacier in central Chile, which is in a recession period. The recent increase in temperature and decline in precipitation have led to an increase of glacial meltwater and sediments entering these lakes. Although the lacustrine systems are also hydrogeologically connected, the limnology of the lakes is strongly controlled by the surface processes related to the respective sub-watersheds and hydrology. Watershed characteristics (area and length, slope, lithology, resistance to erosion, among others) affect the chemical and physical characteristics of both lakes (e.g., nutrient concentration and turbidity). We studied physical and chemical variables and performed 16S rRNA amplicon sequencing to determine the specific microbial signature of the lakes. The transparency, temperature, turbidity and concentrations of chlorophyll-a, dissolved organic matter, nutrients and the total number of cells, revealed the different status of both lakes at the time of sampling. The predominant bacterial groups in both lakes were Proteobacteria, Verrucomicrobia, and Bacteroidetes. Interestingly, the contribution of phototrophs was significantly higher in LN compared to LE (13 and 4% respectively) and the major fraction corresponded to Anoxygenic Phototrophs (AP) represented by Chloroflexi, Alpha, and Betaproteobacteria. Multivariate analyses showed that the nutrient levels and the light availability of both lakes, which finally depend on the hydrological characteristics of the respective watersheds, explain the differential community composition/function. The abundance of a diverse photoheterotrophic bacterioplankton community suggests that the ability to utilize solar energy along with organic and inorganic substrates is a key function in these oligotrophic mountain lakes.


Journal of Visualized Experiments | 2017

Experimental Protocol for Detecting Cyanobacteria in Liquid and Solid Samples with an Antibody Microarray Chip

Yolanda Blanco; Mercedes Moreno-Paz; Victor Parro

Global warming and eutrophication make some aquatic ecosystems behave as true bioreactors that trigger rapid and massive cyanobacterial growth; this has relevant health and economic consequences. Many cyanobacterial strains are toxin producers, and only a few cells are necessary to induce irreparable damage to the environment. Therefore, water-body authorities and administrations require rapid and efficient early-warning systems providing reliable data to support their preventive or curative decisions. This manuscript reports an experimental protocol for the in-field detection of toxin-producing cyanobacterial strains by using an antibody microarray chip with 17 antibodies (Abs) with taxonomic resolution (CYANOCHIP). Here, a multiplex fluorescent sandwich microarray immunoassay (FSMI) for the simultaneous monitoring of 17 cyanobacterial strains frequently found blooming in freshwater ecosystems, some of them toxin producers, is described. A microarray with multiple identical replicates (up to 24) of the CYANOCHIP was printed onto a single microscope slide to simultaneously test a similar number of samples. Liquid samples can be tested either by direct incubation with the antibodies (Abs) or after cell concentration by filtration through a 1- to 3-μm filter. Solid samples, such as sediments and ground rocks, are first homogenized and dispersed by a hand-held ultrasonicator in an incubation buffer. They are then filtered (5 - 20 μm) to remove the coarse material, and the filtrate is incubated with Abs. Immunoreactions are revealed by a final incubation with a mixture of the 17 fluorescence-labeled Abs and are read by a portable fluorescence detector. The whole process takes around 3 h, most of it corresponding to two 1-h periods of incubation. The output is an image, where bright spots correspond to the positive detection of cyanobacterial markers.


Journal of Geophysical Research | 2013

Molecular preservation in halite and perchlorate rich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): implications for the search for molecular biomarkers on Mars.

David Carlos Fernandez-Remolar; G. Chong-Diaz; Marta Ruiz-Bermejo; M. Harir; P. Schmitt-Kopplin; D. Tziotis; D. Gómez-Ortíz; Miriam García-Villadangos; M. P. Martín-Redondo; Felipe Gómez; J. A. Rodriguez-Manfredi; Mercedes Moreno-Paz; G. De Diego-Castilla; Alex Echeverría; Viviana Urtuvia; Yolanda Blanco; Luis Rivas; M. R. M. Izawa; Neil R. Banerjee; Cecilia Demergasso; Victor Parro


Icarus | 2013

Immunological detection of mellitic acid in the Atacama desert: Implication for organics detection on Mars

Yolanda Blanco; Luis Rivas; Marta Ruiz-Bermejo; Victor Parro


Archive | 2015

Multiplex Fluorescent Antibody Microarrays and Antibody Graphs for Microbial and Biomarker Detection in the Environment

Yolanda Blanco; Mercedes Moreno-Paz; Jacobo Aguirre; Victor Parro

Collaboration


Dive into the Yolanda Blanco's collaboration.

Top Co-Authors

Avatar

Victor Parro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis Rivas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mercedes Moreno-Paz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jacobo Aguirre

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miriam García-Villadangos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. A. Rodriguez-Manfredi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Ruiz-Bermejo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patricia Cruz-Gil

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe Gómez

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge