Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meredith Hazen is active.

Publication


Featured researches published by Meredith Hazen.


Journal of Molecular Biology | 2013

Glycan shifting on hepatitis C virus (HCV) e2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies.

Homer Pantua; Jingyu Diao; Mark Ultsch; Meredith Hazen; Mary Mathieu; Krista McCutcheon; Kentaro Takeda; Shailesh V. Date; Tommy K. Cheung; Qui Phung; Phil Hass; David Arnott; Jo-Anne Hongo; David J. Matthews; Alex Brown; Arvind H. Patel; Robert F. Kelley; Charles Eigenbrot; Sharookh Kapadia

Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody-peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies.


mAbs | 2014

An improved and robust DNA immunization method to develop antibodies against extra-cellular loops of multi-transmembrane proteins

Meredith Hazen; Sunil Bhakta; Rajesh Vij; Steven Randle; Dara Y. Kallop; Vicki Chiang; Isidro Hotzel; Bijay S. Jaiswal; Karen E. Ervin; Bing Li; Robby M. Weimer; Paul Polakis; Richard H. Scheller; Jagath R. Junutula; Jo-Anne Hongo

Multi-transmembrane proteins are especially difficult targets for antibody generation largely due to the challenge of producing a protein that maintains its native conformation in the absence of a stabilizing membrane. Here, we describe an immunization strategy that successfully resulted in the identification of monoclonal antibodies that bind specifically to extracellular epitopes of a 12 transmembrane protein, multi-drug resistant protein 4 (MRP4). These monoclonal antibodies were developed following hydrodynamic tail vein immunization with a cytomegalovirus (CMV) promoter-based plasmid expressing MRP4 cDNA and were characterized by flow cytometry. As expected, the use of the immune modulators fetal liver tyrosine kinase 3 ligand (Flt3L) and granulocyte-macrophage colony-stimulating factor positively enhanced the immune response against MRP4. Imaging studies using CMV-based plasmids expressing luciferase showed that the in vivo half-life of the target antigen was less than 48 h using CMV-based plasmids, thus necessitating frequent boosting with DNA to achieve an adequate immune response. We also describe a comparison of plasmids, which contained MRP4 cDNA with either the CMV or CAG promoters, used for immunizations. The observed luciferase activity in this comparison demonstrated that the CAG promoter-containing plasmid pCAGGS induced prolonged constitutive expression of MRP4 and an increased anti-MRP4 specific immune response even when the plasmid was injected less frequently. The method described here is one that can be broadly applicable as a general immunization strategy to develop antibodies against multi-transmembrane proteins, as well as target antigens that are difficult to express or purify in native and functionally active conformation.


JCI insight | 2016

Depletion of major pathogenic cells in asthma by targeting CRTh2

Tao Huang; Meredith Hazen; Yonglei Shang; Meijuan Zhou; Xiumin Wu; Donghong Yan; Zhonghua Lin; Margaret Solon; Elizabeth Luis; Hai Ngu; Yongchang Shi; Arna Katewa; David F. Choy; Nandhini Ramamoorthi; Erick R. Castellanos; Mercedesz Balazs; Min Xu; Wyne P. Lee; Marissa L. Matsumoto; Jian Payandeh; Joseph R. Arron; Jo-Anne Hongo; Jianyong Wang; Isidro Hotzel; Cary D. Austin; Karin Reif

Eosinophilic inflammation and Th2 cytokine production are central to the pathogenesis of asthma. Agents that target either eosinophils or single Th2 cytokines have shown benefits in subsets of biomarker-positive patients. More broadly effective treatment or disease-modifying effects may be achieved by eliminating more than one inflammatory stimulator. Here we present a strategy to concomitantly deplete Th2 T cells, eosinophils, basophils, and type-2 innate lymphoid cells (ILC2s) by generating monoclonal antibodies with enhanced effector function (19A2) that target CRTh2 present on all 4 cell types. Using human CRTh2 (hCRTh2) transgenic mice that mimic the expression pattern of hCRTh2 on innate immune cells but not Th2 cells, we demonstrate that anti-hCRTh2 antibodies specifically eliminate hCRTh2+ basophils, eosinophils, and ILC2s from lung and lymphoid organs in models of asthma and Nippostrongylus brasiliensis infection. Innate cell depletion was accompanied by a decrease of several Th2 cytokines and chemokines. hCRTh2-specific antibodies were also active on human Th2 cells in vivo in a human Th2-PBMC-SCID mouse model. We developed humanized hCRTh2-specific antibodies that potently induce antibody-dependent cell cytotoxicity (ADCC) of primary human eosinophils and basophils and replicated the in vivo depletion capacity of their murine parent. Therefore, depletion of hCRTh2+ basophils, eosinophils, ILC2, and Th2 cells with h19A2 hCRTh2-specific antibodies may be a novel and more efficacious treatment for asthma.


mAbs | 2016

Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation

Qian Gong; Meredith Hazen; Brett Marshall; Susan R. Crowell; Qinglin Ou; Athena W. Wong; Wilson Phung; Jean-Michel Vernes; Y. Gloria Meng; Max L. Tejada; Dana C. Andersen; Robert F. Kelley

ABSTRACT For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal (“afucosylation”). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody.


Molecular Cancer Therapeutics | 2017

An anti-GDNF Family Receptor Alpha 1(GFRA1) Antibody-Drug Conjugate for the Treatment of Hormone Receptor-Positive Breast Cancer

Sunil Bhakta; Lisa Crocker; Yvonne Chen; Meredith Hazen; Melissa Schutten; Dongwei Li; Coenraad Kuijl; Rachana Ohri; Fiona Zhong; Kirsten Achilles Poon; Mary Ann T. Go; Eric Cheng; Robert Piskol; Ron Firestein; Aimee Fourie-O'Donohue; Katherine R. Kozak; Helga Raab; Jo-Anne Hongo; Deepak Sampath; Mark S. Dennis; Richard H. Scheller; Paul Polakis; Jagath R. Junutula

Luminal A (hormone receptor-positive) breast cancer constitutes 70% of total breast cancer patients. In an attempt to develop a targeted therapeutic for this cancer indication, we have identified and characterized Glial cell line–Derived Neurotrophic Factor (GDNF) Family Receptor Alpha 1 (GFRA1) antibody–drug conjugates (ADC) using a cleavable valine-citrulline-MMAE (vcMMAE) linker-payload. RNAseq and IHC analysis confirmed the abundant expression of GFRA1 in luminal A breast cancer tissues, whereas minimal or no expression was observed in most normal tissues. Anti–GFRA-vcMMAE ADC internalized to the lysosomes and exhibited target-dependent killing of GFRA1-expressing cells both in vitro and in vivo. The ADCs using humanized anti-GFRA1 antibodies displayed robust therapeutic activity in clinically relevant cell line–derived (MCF7 and KPL-1) tumor xenograft models. The lead anti-GFRA1 ADC cross-reacts with rodent and cynomolgus monkey GFRA1 antigen and showed optimal pharmacokinetic properties in both species. These properties subsequently enabled a target-dependent toxicity study in rats. Anti-GFRA1 ADC is well tolerated in rats, as seen with other vcMMAE linker–payload based ADCs. Overall, these data suggest that anti–GFRA1-vcMMAE ADC may provide a targeted therapeutic opportunity for luminal A breast cancer patients. Mol Cancer Ther; 17(3); 638–49. ©2017 AACR.


Archive | 2011

Diagnosis and treatments relating to th2 inhibition

Joseph R. Arron; Richard W. Erickson; Michelle Freemer; Meredith Hazen; Guiquan Jia; John G. Matthews; Wendy S. Putnam; Heleen Scheerens; Yanan Zheng


Archive | 2014

ANTI-CRTH2 ANTIBODIES AND METHODS OF USE

Karin Reif; Isidro Hotzel; Jo-Anne Hongo; Tao Huang; Yonglei Shang; Meredith Hazen


Archive | 2014

ANTI-FCRH5 ANTIBODIES

Allen Ebens; Meredith Hazen; Jo-Anne Hongo; Jennifer Johnston; Teemu T. Junttila; Ji Li; Andrew G. Polson


Archive | 2008

Nlrr-1 antagonists and uses thereof

Victoria Smith; Jo-Anne Hongo; Susanna Stinson; Meredith Hazen


Archive | 2017

ANTI-TIGIT ANTIBODIES AND METHODS OF USE

Jane L. Grogan; Robert J. Johnston; Yan Wu; Wei-Ching Liang; Patrick Lupardus; Mahesh Yadav; Dhaya Seshasayee; Meredith Hazen

Collaboration


Dive into the Meredith Hazen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Reif

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge