Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merel S. Ebberink is active.

Publication


Featured researches published by Merel S. Ebberink.


Biochimica et Biophysica Acta | 2012

Genetics and molecular basis of human peroxisome biogenesis disorders

Hans R. Waterham; Merel S. Ebberink

Human peroxisome biogenesis disorders (PBDs) are a heterogeneous group of autosomal recessive disorders comprised of two clinically distinct subtypes: the Zellweger syndrome spectrum (ZSS) disorders and rhizomelic chondrodysplasia punctata (RCDP) type 1. PBDs are caused by defects in any of at least 14 different PEX genes, which encode proteins involved in peroxisome assembly and proliferation. Thirteen of these genes are associated with ZSS disorders. The genetic heterogeneity among PBDs and the inability to predict from the biochemical and clinical phenotype of a patient with ZSS which of the currently known 13 PEX genes is defective, has fostered the development of different strategies to identify the causative gene defects. These include PEX cDNA transfection complementation assays followed by sequencing of the thus identified PEX genes, and a PEX gene screen in which the most frequently mutated exons of the different PEX genes are analyzed. The benefits of DNA testing for PBDs include carrier testing of relatives, early prenatal testing or preimplantation genetic diagnosis in families with a recurrence risk for ZSS disorders, and insight in genotype-phenotype correlations, which may eventually assist to improve patient management. In this review we describe the current status of genetic analysis and the molecular basis of PBDs.


Human Mutation | 2011

Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder.

Merel S. Ebberink; Petra A. W. Mooijer; Jeannette Gootjes; Janet Koster; Ronald J. A. Wanders; Hans R. Waterham

The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders and can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe multisystemic disorders. To get insight into the spectrum of PEX gene defects among ZSS disorders and to investigate if additional human PEX genes are required for functional peroxisome biogenesis, we assigned over 600 ZSS fibroblast cell lines to different genetic complementation groups. These fibroblast cell lines were subjected to a complementation assay involving fusion by means of polyethylene glycol or a PEX cDNA transfection assay specifically developed for this purpose. In a majority of the cell lines we subsequently determined the underlying mutations by sequence analysis of the implicated PEX genes. The PEX cDNA transfection assay allows for the rapid identification of PEX genes defective in ZSS patients. The assignment of over 600 fibroblast cell lines to different genetic complementation groups provides the most comprehensive and representative overview of the frequency distribution of the different PEX gene defects. We did not identify any novel genetic complementation group, suggesting that all PEX gene defects resulting in peroxisome deficiency are currently known. Hum Mutat 31:1–11, 2010.


Journal of Medical Genetics | 2012

A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene

Merel S. Ebberink; Janet Koster; Gepke Visser; Francjan J. van Spronsen; Irene Stolte-Dijkstra; G. Peter A. Smit; Johanna Fock; Hans R. Waterham

Background Peroxisomes are organelles that proliferate continuously and play an indispensable role in human metabolism. Consequently, peroxisomal gene defects can cause multiple, often severe disorders, including the peroxisome biogenesis disorders. Currently, 13 different PEX proteins have been implicated in various stages of peroxisome assembly and protein import. Defects in any of these proteins result in a peroxisome biogenesis disorder. The authors present here a novel genetic defect specifically affecting the division of peroxisomes. Methods The authors have studied biochemical and microscopical peroxisomal parameters in cultured patient fibroblasts, sequenced candidate PEX genes and determined the consequence of the identified PEX11β gene defect on peroxisome biogenesis in patient fibroblasts at different temperatures. Results The patient presented with congenital cataracts, mild intellectual disability, progressive hearing loss, sensory nerve involvement, gastrointestinal problems and recurrent migraine-like episodes. Although microscopical investigations of patient fibroblasts indicated a clear defect in peroxisome division, all biochemical parameters commonly used for diagnosing peroxisomal disorders were normal. After excluding mutations in all PEX genes previously implicated in peroxisome biogenesis disorders, it was found that the defect was caused by a homozygous non-sense mutation in the PEX11β gene. The peroxisome division defect was exacerbated when the patients fibroblasts were cultured at 40°C, which correlated with a marked decrease in the expression of PEX11γ. Conclusions This novel isolated defect in peroxisome division expands the clinical and genetic spectrum of peroxisomal disorders and indicates that peroxisomal defects exist, which cannot be diagnosed by standard laboratory investigations.


Journal of Medical Genetics | 2010

Identification of an unusual variant peroxisome biogenesis disorder caused by mutations in the PEX16 gene

Merel S. Ebberink; Barbara Csányi; Wui K Chong; Simone Denis; Peter Sharp; Petra A. W. Mooijer; Conny Dekker; Claire Spooner; Lock Hock Ngu; Carlos de Sousa; Ronald J. A. Wanders; Michael Fietz; Peter Clayton; Hans R. Waterham; Sacha Ferdinandusse

Background Zellweger syndrome spectrum disorders are caused by mutations in any of at least 12 different PEX genes. This includes PEX16, which encodes an integral peroxisomal membrane protein involved in peroxisomal membrane assembly. PEX16-defective patients have been reported to have a severe clinical presentation. Fibroblasts from these patients displayed a defect in the import of peroxisomal matrix and membrane proteins, resulting in a total absence of peroxisomal remnants. Objective To report on six patients with an unexpected mild variant peroxisome biogenesis disorder due to mutations in the PEX16 gene. Patients presented in the preschool years with progressive spastic paraparesis and ataxia (with a characteristic pattern of progressive leucodystrophy and brain atrophy on MRI scan) and later developed cataracts and peripheral neuropathy. Surprisingly, their fibroblasts showed enlarged, import-competent peroxisomes. Results Plasma analysis revealed biochemical abnormalities suggesting a peroxisomal disorder. Biochemical variables in fibroblasts were only mildly abnormal or within the normal range. Immunofluorescence microscopy revealed the presence of import-competent peroxisomes, which were increased in size but reduced in number. Subsequent sequencing of all known PEX genes revealed five novel apparent homozygous mutations in the PEX16 gene. Conclusions An unusual variant peroxisome biogenesis disorder caused by mutations in the PEX16 gene, with a relatively mild clinical phenotype and an unexpected phenotype in fibroblasts, was identified. Although PEX16 is involved in peroxisomal membrane assembly, PEX16 defects can present with enlarged import-competent peroxisomes in fibroblasts. This is important for future diagnostics of patients with a peroxisomal disorder.


Journal of Human Genetics | 2007

A novel PEX12 mutation identified as the cause of a peroxisomal biogenesis disorder with mild clinical phenotype, mild biochemical abnormalities in fibroblasts and a mosaic catalase immunofluorescence pattern, even at 40 °C

Avraham Zeharia; Merel S. Ebberink; Hans R. Waterham; Alisa Gutman; Andreea Nissenkorn; Stanley H. Korman

AbstractMutations in 12 different PEX genes can cause a generalized peroxisomal biogenesis disorder with clinical phenotypes ranging from Zellweger syndrome to infantile Refsum disease. To identify the specific PEX gene to be sequenced, complementation analysis is first performed in fibroblasts using catalase immunofluorescence. A patient with a relatively mild phenotype of infantile cholestasis, hypotonia and motor delay had elevated plasma very long-chain fatty acids and bile acid precursors, but fibroblast studies revealed normal or only mildly abnormal peroxisomal parameters and mosaic catalase immunofluorescence. This mosaicism persisted even when the incubation temperature was increased from 37 °C to 40 °C, a maneuver previously shown to abolish mosaicism by exacerbating peroxisomal dysfunction. As mosaicism precludes complementation analysis, a candidate gene approach was employed. After PEX1 sequencing was unrewarding, PEX12 sequencing revealed homozygosity for a novel c.102A>T (p.R34S) missense mutation affecting a partially conserved residue in the N-terminal region important for localization to peroxisomes. Transfection of patient fibroblasts with wild-type PEX12 cDNA confirmed that a PEX12 defect was the basis for the PBD. Homozygosity for c.102A>T was identified in a second patient of similar ethnic origin also presenting with a mild phenotype. PEX12 is a highly probable candidate gene for direct sequencing in the context of a mild clinical phenotype with mosaicism and minimally abnormal peroxisomal parameters in fibroblasts.


Human Molecular Genetics | 2015

A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform

Tuva Barøy; Janet Koster; Petter Strømme; Merel S. Ebberink; Doriana Misceo; Sacha Ferdinandusse; Asbjørn Holmgren; Timothy P. Hughes; Else Merckoll; Jostein Westvik; Berit Woldseth; John H. Walter; Nick Wood; Bjørn Tvedt; Kristine Stadskleiv; Hans R. Waterham; Eirik Frengen

Import of peroxisomal matrix proteins, crucial for peroxisome biogenesis, is mediated by the cytosolic receptors PEX5 and PEX7 that recognize proteins carrying peroxisomal targeting signals 1 or 2 (PTS1 or PTS2), respectively. Mutations in PEX5 or 12 other PEX genes cause peroxisome biogenesis disorders, collectively named the Zellweger spectrum disorders (ZSDs), whereas mutations in PEX7 cause rhizomelic chondrodysplasia punctata type 1 (RCDP1). Three additional RCDP types, RCDP2-3-4, are caused, respectively, by mutations in GNPAT, AGPS and FAR1, encoding enzymes involved in plasmalogen biosynthesis. Here we report a fifth type of RCDP (RCDP5) caused by a novel mutation in PEX5. In four patients with RCDP from two independent families, we identified a homozygous frame shift mutation c.722dupA (p.Val242Glyfs(∗)33) in PEX5 (GenBank: NM_001131023.1). PEX5 encodes two isoforms, PEX5L and PEX5S, and we show that the c.722dupA mutation, located in the PEX5L-specific exon 9, results in loss of PEX5L only. Both PEX5 isoforms recognize PTS1-tagged proteins, but PEX5L is also a co-receptor for PTS2-tagged proteins. Previous patients with PEX5 mutations had ZSD, mainly due to deficient import of PTS1-tagged proteins. Similarly to mutations in PEX7, loss of PEX5L results in deficient import of PTS2-tagged proteins only, thus causing RCDP instead of ZSD. We demonstrate that PEX5L expression restores the import of PTS2-tagged proteins in patient fibroblasts. Due to the biochemical overlap between RCDP1 and RCDP5, sequencing of PEX7 and exon 9 in PEX5 should be performed in patients with a selective defect in the import of PTS2-tagged proteins.


Human Mutation | 2010

Spectrum of PEX6 mutations in Zellweger syndrome spectrum patients

Merel S. Ebberink; Janet Kofster; Ronald J. A. Wanders; Hans R. Waterham

The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders. The ZSS disorders can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe, often lethal, multi‐systemic disorders. Defects in the PEX6 gene are the second most common cause for ZSS disorders. The encoded protein PEX6 belongs to the AAA ATPase family and contains two AAA cassettes and an AAA protein family signature. The PEX6 gene consists of 17 exons and previously mutations in the PEX6 gene were found to be scattered over all exons. We developed a post‐PCR high‐resolution melting (HRM) curve assay to scan the PEX6 gene for potential sequence variations followed by selective sequencing to identify these. We analyzed the PEX6 genes of 75 patients assigned to the PEX6 complementation group. We identified a total of 77 different mutations of which 47 mutations have not been reported previously, and 14 polymorphic variants.


Journal of Inherited Metabolic Disease | 2016

The important role of biochemical and functional studies in the diagnostics of peroxisomal disorders

Sacha Ferdinandusse; Merel S. Ebberink; Frédéric M. Vaz; Hans R. Waterham; Ronald J. A. Wanders

Peroxisomes are dynamic organelles that play an essential role in a variety of metabolic pathways. Peroxisomal dysfunction can lead to various biochemical abnormalities and result in abnormal metabolite levels, such as increased very long-chain fatty acid or reduced plasmalogen levels. The metabolite abnormalities in peroxisomal disorders are used in the diagnostics of these disorders. In this paper we discuss in detail the different diagnostic tests available for peroxisomal disorders and focus specifically on the important role of biochemical and functional studies in cultured skin fibroblasts in reaching the right diagnosis. Several examples are shown to underline the power of such studies.


Human Mutation | 2009

Genotype-phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines

Merel S. Ebberink; Petra A. W. Mooyer; Janet Koster; Conny Dekker; François J.M. Eyskens; Carlo Dionisi-Vici; Peter Clayton; Peter G. Barth; Ronald J. A. Wanders; Hans R. Waterham

Proteins destined for the peroxisomal matrix are targeted by virtue of a peroxisomal targeting sequence type 1 (PTS1) or type 2 (PTS2). In humans, targeting of either class of proteins relies on a cytosolic receptor protein encoded by the PEX5 gene. Alternative splicing of PEX5 results in two protein variants, PEX5S and PEX5L. PEX5S is exclusively involved in PTS1 protein import, whereas PEX5L mediates the import of both PTS1 and PTS2 proteins. Genetic complementation testing with over 500 different fibroblast cell lines from patients diagnosed with a peroxisome biogenesis disorder (PBD) identified 11 cell lines with a defect in PEX5. The aim of this study was to characterize these cell lines at a biochemical and genetic level. To this end, the cultured fibroblasts were analyzed for very long chain fatty acid (VLCFA) concentrations, peroxisomal β‐and α‐oxidation, dihydroxyacetone‐phosphate acyltransferase (DHAPAT) activity, peroxisomal thiolase, and catalase immunofluorescence. Mutation analysis of the PEX5 gene revealed 11 different mutations, eight of which are novel. PTS1‐ and PTS2‐protein import capacity was assessed by transfection of the cells with green fluorescent protein (GFP) tagged with either PTS1 or PTS2. Six cell lines showed a defect in both PTS1 and PTS2 protein import, whereas four cell lines only showed a defect in PTS1 protein import. The location of the different mutations within the PEX5 amino acid sequence correlates rather well with the peroxisomal protein import defect observed in the cell lines. Hum Mutat 0,1–6, 2008.


Orphanet Journal of Rare Diseases | 2013

Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder.

Kevin Berendse; Merel S. Ebberink; Lodewijk IJlst; Bwee Tien Poll-The; Hans R. Waterham

BackgroundZellweger spectrum disorders (ZSDs) are multisystem genetic disorders caused by a lack of functional peroxisomes, due to mutations in one of the PEX genes, encoding proteins involved in peroxisome biogenesis. The phenotypic spectrum of ZSDs ranges from an early lethal form to much milder presentations. In cultured skin fibroblasts from mildly affected patients, peroxisome biogenesis can be partially impaired which results in a mosaic catalase immunofluorescence pattern. This peroxisomal mosaicism has been described for specific missense mutations in various PEX genes. In cell lines displaying peroxisomal mosaicism, peroxisome biogenesis can be improved when these are cultured at 30°C. This suggests that these missense mutations affect the folding and/or stability of the encoded protein. We have studied if the function of mutant PEX1, PEX6 and PEX12 can be improved by promoting protein folding using the chemical chaperone arginine.MethodsFibroblasts from three PEX1 patients, one PEX6 and one PEX12 patient were cultured in the presence of different concentrations of arginine. To determine the effect on peroxisome biogenesis we studied the following parameters: number of peroxisome-positive cells, levels of PEX1 protein and processed thiolase, and the capacity to β-oxidize very long chain fatty acids and pristanic acid.ResultsPeroxisome biogenesis and function in fibroblasts with mild missense mutations in PEX1, 6 and 12 can be improved by arginine.ConclusionArginine may be an interesting compound to promote peroxisome function in patients with a mild peroxisome biogenesis disorder.

Collaboration


Dive into the Merel S. Ebberink's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet Koster

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conny Dekker

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Johanna Fock

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge