Meriem Ben-Ali
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meriem Ben-Ali.
PLOS Genetics | 2009
Luis B. Barreiro; Meriem Ben-Ali; Hélène Quach; Guillaume Laval; Etienne Patin; Joseph K. Pickrell; Christiane Bouchier; Magali Tichit; Olivier Neyrolles; Brigitte Gicquel; Judith R. Kidd; Kenneth K. Kidd; Alexandre Alcaïs; Josiane Ragimbeau; Sandra Pellegrini; Laurent Abel; Jean-Laurent Casanova; Lluis Quintana-Murci
Infectious diseases have been paramount among the threats to health and survival throughout human evolutionary history. Natural selection is therefore expected to act strongly on host defense genes, particularly on innate immunity genes whose products mediate the direct interaction between the host and the microbial environment. In insects and mammals, the Toll-like receptors (TLRs) appear to play a major role in initiating innate immune responses against microbes. In humans, however, it has been speculated that the set of TLRs could be redundant for protective immunity. We investigated how natural selection has acted upon human TLRs, as an approach to assess their level of biological redundancy. We sequenced the ten human TLRs in a panel of 158 individuals from various populations worldwide and found that the intracellular TLRs—activated by nucleic acids and particularly specialized in viral recognition—have evolved under strong purifying selection, indicating their essential non-redundant role in host survival. Conversely, the selective constraints on the TLRs expressed on the cell surface—activated by compounds other than nucleic acids—have been much more relaxed, with higher rates of damaging nonsynonymous and stop mutations tolerated, suggesting their higher redundancy. Finally, we tested whether TLRs have experienced spatially-varying selection in human populations and found that the region encompassing TLR10-TLR1-TLR6 has been the target of recent positive selection among non-Africans. Our findings indicate that the different TLRs differ in their immunological redundancy, reflecting their distinct contributions to host defense. The insights gained in this study foster new hypotheses to be tested in clinical and epidemiological genetics of infectious disease.
Clinical and Vaccine Immunology | 2004
Meriem Ben-Ali; Mohamed-Ridha Barbouche; Soufia Bousnina; Abdellatif Chabbou; Koussay Dellagi
ABSTRACT Toll-like receptor 2 (TLR2) is critical in the immune response to mycobacteria. Herein, we report that the frequency of a human TLR2 Arg677Trp polymorphism (C2029T nucleotide substitution) in tuberculosis patients in Tunisia is significantly higher than in healthy controls (P < 0.0001). This finding suggests that this polymorphism could be a risk factor for tuberculosis.
Medicine | 2013
Carolina Prando; Arina Samarina; Jacinta Bustamante; Stéphanie Boisson-Dupuis; Aurélie Cobat; Capucine Picard; Zobaida Alsum; Suliman Al-Jumaah; Sami Al-Hajjar; Husn H. Frayha; Hamoud Al-Mousa; Imen Ben-Mustapha; Parisa Adimi; Jacqueline Feinberg; Maylis de Suremain; Lucile Jannière; Nahal Mansouri; Jean-Louis Stephan; Revathy Nallusamy; Dinakantha Kumararatne; Mohamad Reza Bloorsaz; Meriem Ben-Ali; Houda Elloumi-Zghal; Jalel Chemli; Jihène Bouguila; Mohamed Bejaoui; Emadia Mohammad Alaki; Tariq S. AlFawaz; Eman Al Idrissi; Gehad ElGhazali
AbstractAutosomal recessive interleukin (IL)-12 p40 (IL-12p40) deficiency is a rare genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD). We report the genetic, immunologic, and clinical features of 49 patients from 30 kindreds originating from 5 countries (India, Iran, Pakistan, Saudi Arabia, and Tunisia). There are only 9 different mutant alleles of the IL12B gene: 2 small insertions, 3 small deletions, 2 splice site mutations, and 1 large deletion, each causing a frameshift and leading to a premature stop codon, and 1 nonsense mutation. Four of these 9 variants are recurrent, affecting 25 of the 30 reported kindreds, due to founder effects in specific countries. All patients are homozygous and display complete IL-12p40 deficiency. As a result, the patients lack detectable IL-12p70 and IL-12p40 and have low levels of interferon gamma (IFN-&ggr;). The clinical features are characterized by childhood onset of bacille Calmette-Guérin (attenuated Mycobacterium bovis strain) (BCG) and Salmonella infections, with recurrences of salmonellosis (36.4%) more common than recurrences of mycobacterial disease (25%). BCG vaccination led to BCG disease in 40 of the 41 patients vaccinated (97.5%). Multiple mycobacterial infections were rare, observed in only 3 patients, whereas the association of salmonellosis and mycobacteriosis was observed in 9 patients. A few other infections were diagnosed, including chronic mucocutaneous candidiasis (n = 3), nocardiosis (n = 2), and klebsiellosis (n = 1). IL-12p40 deficiency has a high but incomplete clinical penetrance, with 33.3% of genetically affected relatives of index cases showing no symptoms. However, the prognosis is poor, with mortality rates of up to 28.6%. Overall, the clinical phenotype of IL-12p40 deficiency closely resembles that of interleukin 12 receptor &bgr;1 (IL-12R&bgr;1) deficiency.In conclusion, IL-12p40 deficiency is more common than initially thought and should be considered worldwide in patients with MSMD and other intramacrophagic infectious diseases, salmonellosis in particular.
The Journal of Allergy and Clinical Immunology | 2014
Atfa Sassi; Sandra Lazaroski; Gang Wu; Stuart M. Haslam; Manfred Fliegauf; Fethi Mellouli; Turkan Patiroglu; Ekrem Unal; Mehmet Akif Ozdemir; Zineb Jouhadi; Khadija Khadir; Leila Ben-Khemis; Meriem Ben-Ali; Imen Ben-Mustapha; Lamia Borchani; Dietmar Pfeifer; Thilo Jakob; Monia Khemiri; A. Charlotta Asplund; Manuela O. Gustafsson; Karin E. Lundin; Elin Falk-Sörqvist; Lotte N. Moens; Hatice Eke Gungor; Karin R. Engelhardt; Magdalena Dziadzio; Hans J. Stauss; Bernhard Fleckenstein; Rebecca Meier; Khairunnadiya Prayitno
BACKGROUND Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. OBJECTIVE We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. METHODS After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. RESULTS Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p.Glu340del and p.Leu83Ser). A third homozygous mutation (p.Asp502Tyr) and the p.Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. CONCLUSION Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.
PLOS ONE | 2009
Julien Pothlichet; Anne Burtey; Andriy V. Kubarenko; Grégory Caignard; Brigitte Solhonne; Frédéric Tangy; Meriem Ben-Ali; Lluis Quintana-Murci; Andrea Heinzmann; Jean Daniel Chiche; Pierre-Olivier Vidalain; Alexander N. R. Weber; Mustapha Si-Tahar
Background RIG-I is a pivotal receptor that detects numerous RNA and DNA viruses. Thus, its defectiveness may strongly impair the host antiviral immunity. Remarkably, very little information is available on RIG-I single-nucleotide polymorphisms (SNPs) presenting a functional impact on the host response. Methodology/Principal Findings Here, we studied all non-synonymous SNPs of RIG-I using biochemical and structural modeling approaches. We identified two important variants: (i) a frameshift mutation (P229fs) that generates a truncated, constitutively active receptor and (ii) a serine to isoleucine mutation (S183I), which drastically inhibits antiviral signaling and exerts a down-regulatory effect, due to unintended stable complexes of RIG-I with itself and with MAVS, a key downstream adapter protein. Conclusions/Significance Hence, this study characterized P229fs and S183I SNPs as major functional RIG-I variants and potential genetic determinants of viral susceptibility. This work also demonstrated that serine 183 is a residue that critically regulates RIG-I-induced antiviral signaling.
Human Mutation | 2011
Meriem Ben-Ali; Béatrice Corre; Jérémy Manry; Luis B. Barreiro; Hélène Quach; Michele Boniotto; Sandra Pellegrini; Lluis Quintana-Murci
Toll‐like receptors (TLRs) are considered an essential component of the innate immune system, initiating inflammatory responses following infection of the host. Humans have 10 functional TLRs, differing in their subcellular distributions and the microbial agonists they sense. The phylogenetically conserved TLR1‐2‐6 family is unique in that TLR1 and TLR6 form heterodimers with TLR2 to mediate signalling in response to agonists. Epidemiological genetic studies have identified several TLR variants that appear to influence susceptibility to infectious diseases, but the functional consequences of which remain largely unknown. Here, we assessed the functional impact of the TLR1‐2‐6 variants with altered amino acid sequences segregating naturally in the human population. We used an NF‐κB reporter assay in TLR‐transfected human embryonic kidney 293T cells stimulated with the corresponding TLR agonists. We found that among the 41 naturally occurring variants with amino acid alterations identified in the TLR1‐2‐6 family, 14 of them (five TLR1, four TLR2, and five TLR6 variants) displayed marked impairment of NF‐κB activation. Most of these variants are present at very low population frequencies and are population‐specific. These observations suggest that rare, nonsynonymous TLR mutations are likely to have deleterious effects on immune responses and may therefore contribute to complex susceptibility to infection at the population level. Hum Mutat 32:643–652, 2011.
Molecular Immunology | 2017
Leila Ben-Khemis; Najla Mekki; Imen Ben-Mustapha; Karen Rouault; Fethi Mellouli; Monia Khemiri; Mohamed Bejaoui; L. Essaddam; Saayda Ben-Becher; Lamia Boughamoura; Saida Hassayoun; Meriem Ben-Ali; Mohamed-Ridha Barbouche
Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Mutations in PGM3 gene have been recently shown to underlie a new congenital disorder of glycosylation often associated to elevated IgE. Herein, we report twelve PGM3 deficient patients. They belong to three highly consanguineous families, originating from a rural district in the west central Tunisia. The patients clinical phenotype is characterized by severe respiratory and cutaneous infections as well as developmental delay and severe mental retardation. Fourteen patients died in early infancy before diagnosis supporting the severity of the clinical phenotype. Laboratory findings revealed elevated IgE, CD4 lymphopenia and impaired T cell proliferation in most patients. Genetic analysis showed the presence, of a unique homozygous mutation (p.Glu340del) in PGM3 gene leading to reduced PGM3 abundance. Segregating analysis using fifteen polymorphic markers overlapping PGM3 gene showed that all patients inherited a common homozygous haplotype encompassing 10-Mb on chromosome 6. The founder mutational event was estimated to have occurred approximately 100 years ago. To date, (p.Glu340del) mutation represents the first founder mutation identified in PGM3 gene. These findings will facilitate the development of preventive approaches through genetic counselling and prenatal diagnosis in the affected families.
Molecular Immunology | 2016
Hanen Ouadani; Imen Ben-Mustapha; Meriem Ben-Ali; Beya Larguèche; Tihana Jovanic; Sylvie Garcia; Benoit Arcangioli; Houda Elloumi-Zghal; Dahmani M. Fathallah; Mongia Hachicha; H. Masmoudi; François Rougeon; Mohamed-Ridha Barbouche
Activation induced cytidine deaminase (AID) is an essential enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) during secondary immune response. Mutations in the AICDA gene are responsible for Hyper IgM 2 syndrome where both CSR and SHM or only CSR are affected. Indeed, triggering either of the two mechanisms requires the DNA deamination activity of AID. Besides, different domains of AID may be differentially involved in CSR and SHM through their interaction with specific cofactors. Herein, we studied the AID-induced SHM activity of the AID-His130Pro mutant identified in a patient with Hyper IgM 2 syndrome. AID mutagenic activity was monitored by the reversion of nonsense mutations of the EGFP gene assessed by flow cytometry. We found that the His130Pro mutation, which affects CSR, preserves AID mutagenic activity. Indeed, the His130 residue is located in a putative specific CSR region in the APOBEC-like domain, known to involve CSR specific cofactors that probably play a major role in AID physiological activities.
Frontiers in Immunology | 2017
Mohamed-Ridha Barbouche; Najla Mekki; Meriem Ben-Ali; Imen Ben-Mustapha
During the last decades, the study of primary immunodeficiencies (PIDs) has contributed tremendously to unravel novel pathways involved in a variety of immune responses. Many of these PIDs have an autosomal recessive (AR) mode of inheritance. Thus, the investigation of the molecular basis of PIDs is particularly relevant in consanguineous populations from Middle East and North Africa (MENA). Although significant efforts have been made in recent years to develop genetic testing across the MENA region, few comprehensive studies reporting molecular basis of PIDs in these settings are available. Herein, we review genetic characteristics of PIDs identified in 168 patients from an inbred Tunisian population. A spectrum of 25 genes involved was analyzed. We show that AR forms compared to X-linked or autosomal dominant forms are clearly the most frequent. Furthermore, the study of informative consanguineous families did allow the identification of a novel hyper-IgE syndrome linked to phosphoglucomutase 3 mutations. We did also report a novel form of autoimmune lymphoproliferative syndrome caused by homozygous FAS mutations with normal or residual protein expression as well as a novel AR transcription factor 3 deficiency. Finally, we identified several founder effects for specific AR mutations. This did facilitate the implementation of preventive approaches through genetic counseling in affected consanguineous families. All together, these findings highlight the specific nature of highly consanguineous populations and confirm the importance of unraveling the molecular basis of genetic diseases in this context. Besides providing a better fundamental knowledge of novel pathways, their study is improving diagnosis strategies and appropriate care.
Human Immunology | 2007
Meriem Ben-Ali; Luis B. Barreiro; Abdellatif Chabbou; Raja Haltiti; Ezzeddine Braham; Olivier Neyrolles; Koussay Dellagi; Brigitte Gicquel; Lluis Quintana-Murci; Mohamed-Ridha Barbouche