Merlin L. Mah
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Merlin L. Mah.
IEEE Sensors Journal | 2010
Merlin L. Mah; Michael E. Manfred; Sangho S. Kim; Mirjana Prokic; E.G. Yukihara; Joseph J. Talghader
The thermal history of a material with initially filled trap states may be probed using thermoluminescence. Since luminescent microparticles are composed of robust oxides, they are viable candidates for sensing temperature under conditions where all other types of direct-contact sensors fail. Mg2SiO4: Tb, Co particles with two thermoluminescent peaks have been heated using micromachined heaters over a 232°C to 313°C range on time scales of less than 200 ms. The effect of maximum temperature during excitation on the intensity ratio of the two luminescent peaks has been compared with first-order kinetics theory and shown to match within an average error of 4.4%.
international conference on optical mems and nanophotonics | 2009
Merlin L. Mah; Michael E. Manfred; Sangho S. Kim; Mirjana Prokic; E.G. Yukihara; Joseph J. Talghader
The thermal history of a material with initially filled trap states has been probed using the thermoluminescence of microparticle sensors. Mg2SiO4∶Tb,Co particles with two thermoluminescence peaks have been heated using microheaters over a 230°C to 310°C range for durations of less than 200ms. The effect of maximum temperature during excitation on the intensity ratio of the peaks is compared with first-order kinetics theory and shown to match within an average error of 4.4%.
Microsystems & Nanoengineering | 2016
Joseph J. Talghader; Merlin L. Mah; E.G. Yukihara; Adam C. Coleman
While there are innumerable devices that measure temperature, the nonvolatile measurement of thermal history is far more difficult, particularly for sensors embedded in extreme environments such as fires and explosions. In this review, an extensive analysis is given of one such technology: thermoluminescent microparticles. These are transparent dielectrics with a large distribution of trap states that can store charge carriers over very long periods of time. In their simplest form, the population of these traps is dictated by an Arrhenius expression, which is highly dependent on temperature. A particle with filled traps that is exposed to high temperatures over a short period of time will preferentially lose carriers in shallow traps. This depopulation leaves a signature on the particle luminescence, which can be used to determine the temperature and time of the thermal event. Particles are prepared—many months in advance of a test, if desired—by exposure to deep ultraviolet, X-ray, beta, or gamma radiation, which fills the traps with charge carriers. Luminescence can be extracted from one or more particles regardless of whether or not they are embedded in debris or other inert materials. Testing and analysis of the method is demonstrated using laboratory experiments with microheaters and high energy explosives in the field. It is shown that the thermoluminescent materials LiF:Mg,Ti, MgB4O7:Dy,Li, and CaSO4:Ce,Tb, among others, provide accurate measurements of temperature in the 200 to 500 °C range in a variety of high-explosive environments.
ieee sensors | 2011
Merlin L. Mah; Philip R. Armstrong; Sangho S. Kim; Joel R. Carney; James M. Lightstone; Joseph J. Talghader
Thermoluminescent LiF:Mg,Ti (TLD-100) microparticle sensors are demonstrated to record the thermal history of the region near a detonated high explosive. Microparticles were gamma-irradiated to fill their charge-carrier traps and then exposed to the detonation of 20 g of a plastic bonded explosive formulation containing HMX and Al particles at a test distance of approximately 22 cm from the center of the detonation. The thermal history was reconstructed by measuring the thermoluminescent signature of the traps and matching it to appropriate models. The trap populations derived from luminescence measurements and modeling indicate that the particles experienced a maximum temperature of 240 °C, then cooled to 1 °C above ambient temperature within 0.4 seconds. The resulting glow curve intensity is calculated to match the observed post-detonation signal to 3% averaged over the comparison values used for reconstruction.
international conference on optical mems and nanophotonics | 2008
Michael E. Manfred; Nicholas T. Gabriel; Merlin L. Mah; E.G. Yukihara; Joseph J. Talghader
A technique using temperature pulses was used to measure thermoluminescence in single aluminum oxide microparticles. This method can excite a large fraction of trapped carriers to luminesce simultaneously, which increases the maximum intensity and makes it ideal for probing the luminescence of micro- and nano-particles. Using 50 ms and 10 ms pulses, the technique resulted in curves similar to standard thermo luminescence curves with peaks near 240degC and 300degC respectfully. Increasing the temperature of a single pulse resulted in an increase in intensity.
international conference on solid state sensors actuators and microsystems | 2015
Philip R. Armstrong; Merlin L. Mah; Kyle D. Olson; Joseph J. Talghader
Under low light conditions, high temperature measurements of luminescence are limited by the overlap of the thermal emission spectra and the luminescent emission spectra being measured. A solution to this is to have a heat source that can be designed not to emit in a certain wavelength range(s) by coating it with an interference multilayer. The multilayer effectively changes the emissivity of the heat source. Microheaters made from aluminum oxide platforms with platinum heating elements were coated with aluminum oxide and titanium oxide multilayers. This multilayer structure was used to measure the thermoluminescence of CaSO4:Ce,Tb up to 420°C. They also showed a thermal emission background 800 times lower at 600°C than the same microheater with no multilayer structure.
international conference on optical mems and nanophotonics | 2014
Philip R. Armstrong; Merlin L. Mah; Lucas N. Taylor; Joseph J. Talghader
Infrared-transparent microheaters have been constructed to reduce the background blackbody radiation produced by the heater. Among other applications, such heaters allow one to probe the high temperature peaks of thermoluminescent(TL) materials. The microheater consists of peripheral platinum heating elements on a mid-infrared transparent alumina platform. Alumina has a relatively low blackbody signal at high temperature for wavelengths less than 8μm. To test the reduced blackbody emission, an aperture was placed over the heating coils and then the transparent center of the microheater. The amount of infrared light transmitted through the aperture was reduced by 90% as the aperture moved from the highly emissive heater coils at 450°C to the largely transparent center at the same temperature.
Journal of Applied Physics | 2013
Sangho S. Kim; Philip R. Armstrong; Merlin L. Mah; Joseph J. Talghader
It is well known that thermal gradients penetrating deep into a material can preserve a memory of the temperature history of the surface. To date, this concept has been largely applied in the earth sciences, but there are many applications where a memory of rapid thermal events would be useful. For example, multiple layers of thermoluminescent films could serve as temperature sensors that indicate temperature versus depth in a microfabricated structure. As an advance toward this goal, this paper examines the effect of nonuniform temperature profiles on the thermoluminescence of heterogeneous multilayers. A Nd:YAG laser is used to create a known thermal event and apply pulses of heat energy of varying duration to a metalized thermoluminescent multilayer composed of LiF:Mg,Ti and CaF2:Dy. The thermoluminescence of the system is measured before and after the applied laser pulse. To model the process, a finite-difference time-domain method is used to calculate the dynamic heat transfer, and the temperature di...
international conference on optical mems and nanophotonics | 2016
Andrew K. Brown; Merlin L. Mah; Joseph J. Talghader
The minimum and maximum laser irradiances that are effective in cleaning etch-released membranes and microstructure was measured for carbon microparticles on LPCVD silicon nitride thin films and suspended platforms. A 1064nm Nd:Yag laser was scanned across the samples to ablate the contaminants. Microscope images of the membranes showed mass removal for an irradiance as low as 600W cm-2. More thorough cleaning was achieved by increasing the irradiance. For 2.5×2.5mm, 205nm thin silicon nitride membranes, 79% of the contaminated area was removed with an exposure of 3.7kW cm-2. Catastrophic damage was seen at a power level of 8.4kW cm-2. Ablation effects were also measured as a change in optical absorption using a photo thermal common-path interferometer. Peak absorption values were decreased from over 100,000ppm to less than 20,000ppm. Silicon nitride platforms were also tested. Despite significant substrate heating, the platforms survived intact up to power levels of 8.4kW cm-2 with near perfect cleaning of carbon particles from their surfaces.
Journal of Micromechanics and Microengineering | 2016
Philip R. Armstrong; Merlin L. Mah; Kyle D. Olson; Lucas N. Taylor; Joseph J. Talghader
High temperature microheaters have been designed and constructed to reduce the background thermal emission radiation produced by the heater. Such heaters allow one to probe luminescence with very low numbers of photons where the background emission would overwhelm the desired signal. Two methods to reduce background emission are described: one with low emission materials and the other with interference coating design. The first uses platforms composed of material that is transparent to mid-infrared light and therefore of low emissivity. Heating elements are embedded in the periphery of the heater. The transparent platform is composed of aluminum oxide, which is largely transparent for wavelengths less than about 8 μm. In the luminescent microscopy used to test the heater, an optical aperture blocks emission from the heating coils while passing light from the heated objects on the transparent center of the microheater. The amount of infrared light transmitted through the aperture was reduced by 90% as the aperture was moved from the highly emissive heater coils at 450 °C to the largely transparent center at the same temperature. The second method uses microheaters with integrated multilayer interference structures designed to limit background emission in the spectral range of the low-light luminescence object being measured. These heaters were composed of aluminum oxide, titanium dioxide, and platinum and were operated over a large range of temperatures, from 50 °C to 600 °C. At 600 °C, they showed a background photon emission only 1/800 that of a comparison heater without the multilayer interference structure. In this structure, the radiation background was sufficiently reduced to easily monitor weak thermoluminescent emission from CaSO4:Ce,Tb microparticles.