Merlin L. Robb
Walter Reed Army Institute of Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Merlin L. Robb.
The New England Journal of Medicine | 2009
Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Joseph Chiu; Robert Paris; Nakorn Premsri; Chawetsan Namwat; Mark S. de Souza; Elizabeth Adams; Michael Benenson; Sanjay Gurunathan; Jim Tartaglia; John G. McNeil; Donald P. Francis; Donald Stablein; Deborah L. Birx; Supamit Chunsuttiwat; Chirasak Khamboonruang; Thongcharoen P; Merlin L. Robb; Nelson L. Michael; Prayura Kunasol; Jerome H. Kim
BACKGROUND The development of a safe and effective vaccine against the human immunodeficiency virus type 1 (HIV-1) is critical to pandemic control. METHODS In a community-based, randomized, multicenter, double-blind, placebo-controlled efficacy trial, we evaluated four priming injections of a recombinant canarypox vector vaccine (ALVAC-HIV [vCP1521]) plus two booster injections of a recombinant glycoprotein 120 subunit vaccine (AIDSVAX B/E). The vaccine and placebo injections were administered to 16,402 healthy men and women between the ages of 18 and 30 years in Rayong and Chon Buri provinces in Thailand. The volunteers, primarily at heterosexual risk for HIV infection, were monitored for the coprimary end points: HIV-1 infection and early HIV-1 viremia, at the end of the 6-month vaccination series and every 6 months thereafter for 3 years. RESULTS In the intention-to-treat analysis involving 16,402 subjects, there was a trend toward the prevention of HIV-1 infection among the vaccine recipients, with a vaccine efficacy of 26.4% (95% confidence interval [CI], -4.0 to 47.9; P=0.08). In the per-protocol analysis involving 12,542 subjects, the vaccine efficacy was 26.2% (95% CI, -13.3 to 51.9; P=0.16). In the modified intention-to-treat analysis involving 16,395 subjects (with the exclusion of 7 subjects who were found to have had HIV-1 infection at baseline), the vaccine efficacy was 31.2% (95% CI, 1.1 to 52.1; P=0.04). Vaccination did not affect the degree of viremia or the CD4+ T-cell count in subjects in whom HIV-1 infection was subsequently diagnosed. CONCLUSIONS This ALVAC-HIV and AIDSVAX B/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk. Vaccination did not affect the viral load or CD4+ count in subjects with HIV infection. Although the results show only a modest benefit, they offer insight for future research. (ClinicalTrials.gov number, NCT00223080.)
The New England Journal of Medicine | 2012
Barton F. Haynes; Peter B. Gilbert; M. Juliana McElrath; Susan Zolla-Pazner; Georgia D. Tomaras; S. Munir Alam; David T. Evans; David C. Montefiori; Chitraporn Karnasuta; Ruengpueng Sutthent; Hua-Xin Liao; Anthony L. DeVico; George K. Lewis; Constance Williams; Abraham Pinter; Youyi Fong; Holly Janes; Allan C. deCamp; Yunda Huang; Mangala Rao; Erik Billings; Nicos Karasavvas; Merlin L. Robb; Viseth Ngauy; Mark S. de Souza; Robert Paris; Guido Ferrari; Robert T. Bailer; Kelly A. Soderberg; Charla Andrews
BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
Nature Medicine | 2000
Shuenn-Jue L. Wu; Geraldine Grouard-Vogel; Wellington Sun; John R. Mascola; Elena F. Brachtel; Ravithat Putvatana; Mark K. Louder; Luis Filgueira; Mary Marovich; Henry K. Wong; Andrew Blauvelt; Gerald S. Murphy; Merlin L. Robb; Bruce L. Innes; Deborah L. Birx; Curtis G. Hayes; Sarah S. Frankel
Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine. Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosquitoes of the genus Aedes, we undertook experiments to determine whether human dendritic cells (DCs) were permissive for the growth of DV. Initial experiments demonstrated that blood-derived DCs were 10-fold more permissive for DV infection than were monocytes or macrophages. We confirmed this with human skin DCs (Langerhans cells and dermal/interstitial DCs). Using cadaveric human skin explants, we exposed skin DCs to DV ex vivo. Of the human leukoctye antigen DR-positive DCs that migrated from the skin, emigrants from both dermis and epidermis, 60–80% expressed DV antigens. These observations were supported by histologic findings from the skin rash of a human subject who received an attenuated tetravalent dengue vaccine. Immunohistochemistry of the skin showed CD1a-positive DCs double-labeled with an antibody against DV envelope glycoprotein. These data demonstrate that human skin DCs are permissive for DV infection, and provide a potential mechanism for the transmission of DV into human skin.
Nature | 2012
Dan H. Barouch; Jinyan Liu; Hualin Li; Lori F. Maxfield; Peter Abbink; Diana M. Lynch; M. Justin Iampietro; Adam SanMiguel; Michael S. Seaman; Guido Ferrari; Donald N. Forthal; Ilnour Ourmanov; Vanessa M. Hirsch; Angela Carville; Keith G. Mansfield; Donald Stablein; Maria G. Pau; Hanneke Schuitemaker; Jerald C. Sadoff; Erik Billings; Mangala Rao; Merlin L. Robb; Jerome H. Kim; Mary Marovich; Jaap Goudsmit; Nelson L. Michael
Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIVSME543 Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIVMAC251 challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.
Nature | 2012
Morgane Rolland; Paul T. Edlefsen; Brendan B. Larsen; Sodsai Tovanabutra; Eric Sanders-Buell; Tomer Hertz; Allan C. deCamp; Chris Carrico; Sergey Menis; Craig A. Magaret; Hasan Ahmed; Michal Juraska; Lennie Chen; Philip Konopa; Snehal Nariya; Julia N. Stoddard; Kim Wong; Haishuang Zhao; Wenjie Deng; Brandon Maust; Meera Bose; Shana Howell; A Bates; Michelle Lazzaro; Annemarie O'Sullivan; Esther Lei; Andrea Bradfield; Grace Ibitamuno; Vatcharain Assawadarachai; Robert J. O'Connell
The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 ± 7 Å) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.
Nature | 2014
James B. Whitney; Alison L. Hill; Srisowmya Sanisetty; Pablo Penaloza-MacMaster; Jinyan Liu; Mayuri Shetty; Lily Parenteau; Crystal Cabral; Jennifer Shields; Stephen Blackmore; Jeffrey Y. Smith; Amanda L. Brinkman; Lauren Peter; Sheeba Mathew; Kaitlin M. Smith; Erica N. Borducchi; Daniel I. S. Rosenbloom; Mark G. Lewis; Jillian Hattersley; Bei Li; Joseph Hesselgesser; Romas Geleziunas; Merlin L. Robb; Jerome H. Kim; Nelson L. Michael; Dan H. Barouch
The viral reservoir represents a critical challenge for human immunodeficiency virus type 1 (HIV-1) eradication strategies. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded rapidly after mucosal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before systemic viraemia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIVMAC251 infection. Treatment with ART on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later time points. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, after discontinuation of ART following 24 weeks of fully suppressive therapy, virus rebounded in all animals, although the monkeys that were treated on day 3 exhibited a delayed viral rebound as compared with those treated on days 7, 10 and 14. The time to viral rebound correlated with total viraemia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded rapidly after intrarectal SIV infection of rhesus monkeys, during the ‘eclipse’ phase, and before detectable viraemia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.
The Journal of Infectious Diseases | 2012
David C. Montefiori; Chitraporn Karnasuta; Ying Huang; Hasan Ahmed; Peter B. Gilbert; Mark S. de Souza; Robert McLinden; Sodsai Tovanabutra; Agnes Laurence-Chenine; Eric Sanders-Buell; M. Anthony Moody; Mattia Bonsignori; Christina Ochsenbauer; John C. Kappes; Haili Tang; Kelli M. Greene; Hongmei Gao; Celia C. LaBranche; Charla Andrews; Victoria R. Polonis; Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Steve Self; Phillip W. Berman; Donald P. Francis; Faruk Sinangil; Carter Lee; Jim Tartaglia
Background. A recombinant canarypox vector expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pro, and membrane-linked gp120 (vCP1521), combined with a bivalent gp120 protein boost (AIDSVAX B/E), provided modest protection against HIV-1 infection in a community-based population in Thailand (RV144 trial). No protection was observed in Thai injection drug users who received AIDSVAX B/E alone (Vax003 trial). We compared the neutralizing antibody response in these 2 trials. Methods. Neutralization was assessed with tier 1 and tier 2 strains of virus in TZM-bl and A3R5 cells. Results. Neutralization of several tier 1 viruses was detected in both RV144 and Vax003. Peak titers were higher in Vax003 and waned rapidly in both trials. The response in RV144 was targeted in part to V3 of gp120.vCP1521 priming plus 2 boosts with gp120 protein was superior to 2 gp120 protein inoculations alone, confirming a priming effect for vCP1521. Sporadic weak neutralization of tier 2 viruses was detected only in Vax003 and A3R5 cells. Conclusion. The results suggest either that weak neutralizing antibody responses can be partially protective against HIV-1 in low-risk heterosexual populations or that the modest efficacy seen in RV144 was mediated by other immune responses, either alone or in combination with neutralizing antibodies.
The Journal of Infectious Diseases | 2008
Noah Kiwanuka; Oliver Laeyendecker; Merlin L. Robb; Godfrey Kigozi; Miguel A. Arroyo; Francine McCutchan; Leigh Anne Eller; Michael A. Eller; Fred Makumbi; Deborah L. Birx; Fred Wabwire-Mangen; David Serwadda; Nelson Sewankambo; Thomas C. Quinn; Maria J. Wawer; Ronald H. Gray
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) subtypes differ in biological characteristics that may affect pathogenicity. METHODS We determined the HIV-1 subtype-specific rates of disease progression among 350 HIV-1 seroconverters. Subtype, viral load, and CD4(+) cell count were determined. Cox proportional hazards regression modeling was used to estimate adjusted hazard ratios (HRs) of progression to acquired immunodeficiency syndrome (AIDS) (defined as a CD4(+) cell count of < or =250 cells/mm(3)) and to AIDS-associated death. RESULTS A total of 59.1% of study subjects had subtype D strains, 15.1% had subtype A, 21.1% had intersubtype recombinant subtypes, 4.3% had multiple subtypes, and 0.3% had subtype C. Of the 350 subjects, 129 (37%) progressed to AIDS, and 68 (19.5%) died of AIDS. The median time to AIDS onset was shorter for persons with subtype D (6.5 years), recombinant subtypes (5.6 years), or multiple subtypes (5.8 years), compared with persons with subtype A (8.0 years; P = .022). Relative to subtype A, adjusted HRs of progression to AIDS were 2.13 [95% confidence interval {CI}, 1.10-4.11] for subtype D, 2.16 [95% CI, 1.05-4.45] for recombinant subtypes, and 4.40 [95% CI, 1.71-11.3] for multiple subtypes. The risk of progression to death was significantly higher for subtype D (adjusted HR, 5.65; 95% CI, 1.37-23.4), recombinant subtypes (adjusted HR, 6.70; 95% CI, 1.56-28.8), and multiple subtypes (adjusted HR, 7.67; 95% CI, 1.27-46.3), compared with subtype A. CONCLUSIONS HIV disease progression is affected by HIV-1 subtype. This finding may impact decisions on when to initiate antiretroviral therapy and may have implications for future trials of HIV-1 vaccines aimed at slowing disease progression.
The Journal of Infectious Diseases | 1999
Chris Beyrer; Andrew W. Artenstein; Sungwal Rugpao; Henry A. F. Stephens; Thomas C. VanCott; Merlin L. Robb; Maneerat Rinkaew; Deborah L. Birx; Chirasak Khamboonruang; Peter A. Zimmerman; Kenrad E. Nelson; Chawalit Natpratan
Characterization of persons highly exposed to human immunodeficiency virus (HIV)-1 who remain uninfected may help define protective immunity. Seventeen HIV-1-seronegative Thai female sex workers (CSWs) with epidemiologic evidence of exposure to HIV-1 were studied for humoral immune responses and phenotypic and genotypic analyses of HLA class I and CCR5 allelic profiles. Infected CSWs and low-risk HIV-1-seronegative Thai women were controls. Highly exposed, persistently seronegative (HEPS) CSWs did not differ from HIV-infected CSWs in HIV risks, condom use, or sexually transmitted diseases. Significant differences were seen in humoral immune responses: gp160-specific IgA responses were detected in cervicovaginal lavage fluids in 6 of 13 HEPS CSWs but 0 of 21 seronegative subjects. All women had wild-type CCR5. HEPS CSWs were more likely to have the HLA-B18 phenotype and genotype than were matched controls (corrected P=.018). Epidemiologic exposure to HIV-1 without apparent infection, an unusual distribution of HLA class I alleles, and HIV-1 gp160-specific IgA responses suggest a biologic basis for this phenomenon.
Cell | 2013
Dan H. Barouch; Kathryn E. Stephenson; Erica N. Borducchi; Kaitlin M. Smith; Kelly Stanley; Anna McNally; Jinyan Liu; Peter Abbink; Lori F. Maxfield; Michael S. Seaman; Anne-Sophie Dugast; Galit Alter; Melissa Ferguson; Wenjun Li; Patricia L. Earl; Bernard Moss; Elena E. Giorgi; James Szinger; Leigh Anne Eller; Erik Billings; Mangala Rao; Sodsai Tovanabutra; Eric Sanders-Buell; Mo Weijtens; Maria G. Pau; Hanneke Schuitemaker; Merlin L. Robb; Jerome H. Kim; Bette T. Korber; Nelson L. Michael
The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:
Collaboration
Dive into the Merlin L. Robb's collaboration.
Henry M. Jackson Foundation for the Advancement of Military Medicine
View shared research outputs