Mette Soerensen
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mette Soerensen.
Aging Cell | 2010
Mette Soerensen; Serena Dato; Kaare Christensen; Matt McGue; Tinna Stevnsner; Vilhelm A. Bohr; Lene Christiansen
Genetic variation in FOXO3A has previously been associated with human longevity. Studies published so far have been case–control studies and hence vulnerable to bias introduced by cohort effects. In this study we extended the previous findings in the cohorts of oldest old Danes (the Danish 1905 cohort, N = 1089) and middle‐aged Danes (N = 736), applying a longitudinal study design as well as the case–control study design. Fifteen SNPs were chosen in order to cover the known common variation in FOXO3A. Comparing SNP frequencies in the oldest old with middle‐aged individuals, we found association (after correction for multiple testing) of eight SNPs; 4 (rs13217795, rs2764264, rs479744, and rs9400239) previously reported to be associated with longevity and four novel SNPs (rs12206094, rs13220810, rs7762395, and rs9486902 (corrected P‐values 0.001–0.044). Moreover, we found association of the haplotypes TAC and CAC of rs9486902, rs10499051, and rs12206094 (corrected P‐values: 0.01–0.03) with longevity. Finally, we here present data applying a longitudinal study design; when using follow‐up survival data on the oldest old in a longitudinal analysis, we found no SNPs to remain significant after the correction for multiple testing (Bonferroni correction). Hence, our results support and extent the proposed role of FOXO3A as a candidate longevity gene for survival from younger ages to old age, yet not during old age.
Aging Cell | 2012
Mette Soerensen; Mikael Thinggaard; Marianne Nygaard; Serena Dato; Qihua Tan; Jacob von Bornemann Hjelmborg; Karen Andersen-Ranberg; Tinna Stevnsner; Vilhelm A. Bohr; Masayuki Kimura; Abraham Aviv; Kaare Christensen; Lene Christiansen
Telomerase is of key importance for telomere maintenance, and variants of the genes encoding its major subunits, telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), are candidates for interindividual variation in telomere length. Recently, the two SNPs rs3772190 and rs12696304 in the TERC locus were reported to be associated with leukocyte telomere length (LTL) in two genome‐wide association studies, while one haplotype of TERT (rs2853669, rs2736098, rs33954691, and rs2853691) has been reported to be associated with both LTL and longevity in a candidate gene study. In this study, we investigated the two TERC and four TERT SNPs in middle‐aged, old, and oldest‐old Danes (58–100 years) and their association with LTL (n = 864) and longevity (n = 1069). Furthermore, data on 11 TERT tagging SNPs in 1089 oldest‐old and 736 middle‐aged Danes were investigated with respect to longevity. For all SNPs, the association with longevity was investigated using both a cross‐sectional and a longitudinal approach. Applying an additive model, we found association of LTL with the minor TERC alleles of rs3772190 (A) and rs12696304 (G), such that a shorter LTL was seen in rs3772190 A carriers (regression coefficient = −0.08, P = 0.011) and in male rs12696304 G carriers (regression coefficient = −0.13, P = 0.014). No TERT variations showed association. Moreover, the A allele of rs3772190 (TERC) was found to be associated with longevity [hazard rate (AG + AA) = 1.31, P = 0.006]. No associations with longevity were observed for the TERT SNPs or haplotypes. Our study, thus, indicates that TERC is associated with both LTL and longevity in humans.
Mechanisms of Ageing and Development | 2009
Mette Soerensen; Kaare Christensen; Tinna Stevnsner; Lene Christiansen
The free radical theory of aging states that reactive oxygen species (ROS) play a key role in age-related accumulation of cellular damage, and consequently influence aging and longevity. Therefore, variation in genes encoding proteins protecting against ROS could be expected to influence variation in aging and life span. The rs4880 and rs1050450 SNPs in the manganese superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPX1) genes, respectively, are associated with age-related diseases and appear to affect the activities of the encoded variant proteins. In this study we genotyped these SNPs in 1650 individuals from the Danish 1905 cohort (follow-up time: 1998-2008, age at intake: 92-93 years, number of deaths: 1589 (96.3%)) and investigated the association with aging and longevity. We found decreased mortality of individuals holding either the MnSOD rs4880 C or the GPX1 rs1050450 T alleles (HR (MnSOD(CC/CT))=0.91, P=0, p=0.002 and HR (GPX1(TT/TC))=0.93, p=0.008). Furthermore, a synergetic effect of the alleles was observed (HR=0.76, p=0.001). Finally, moderate positive associations with good self rated health, decreased disability and increased cognitive capacity were observed. Our results thus indicate that genetic variation in MnSOD and GPX1 may be associated with aging and longevity.
Experimental Gerontology | 2012
Mette Soerensen; Serena Dato; Qihua Tan; Mikael Thinggaard; Rabea Kleindorp; Marian Beekman; Rune Jacobsen; H. Eka D. Suchiman; Anton J. M. de Craen; Rudi G. J. Westendorp; Stefan Schreiber; Tinna Stevnsner; Vilhelm A. Bohr; P. Eline Slagboom; Almut Nebel; James W. Vaupel; Kaare Christensen; Matt McGue; Lene Christiansen
Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.
Aging Cell | 2015
Mette Soerensen; Marianne Nygaard; Serena Dato; Tinna Stevnsner; Vilhelm A. Bohr; Kaare Christensen; Lene Christiansen
FOXO3A variation has repeatedly been reported to associate with human longevity, yet only few studies have investigated whether FOXO3A variation also associates with aging‐related traits. Here, we investigate the association of 15 FOXO3A tagging single nucleotide polymorphisms (SNPs) in 1088 oldest‐old Danes (age 92–93) with 4 phenotypes known to predict their survival: cognitive function, hand grip strength, activity of daily living (ADL), and self‐rated health. Based on previous studies in humans and foxo animal models, we also explore self‐reported diabetes, cancer, cardiovascular disease, osteoporosis, and bone (femur/spine/hip/wrist) fracture. Gene‐based testing revealed significant associations of FOXO3A variation with ADL (P = 0.044) and bone fracture (P = 0.006). The single‐SNP statistics behind the gene‐based analysis indicated increased ADL (decreased disability) and reduced bone fracture risk for carriers of the minor alleles of 8 and 10 SNPs, respectively. These positive directions of effects are in agreement with the positive effects on longevity previously reported for these SNPs. However, when correcting for the test of 9 phenotypes by Bonferroni correction, bone fracture showed borderline significance (P = 0.054), while ADL did not (P = 0.396). Although the single‐SNP associations did not formally replicate in another study population of oldest‐old Danes (n = 1279, age 94–100), the estimates were of similar direction of effect as observed in the Discovery sample. A pooled analysis of both study populations displayed similar or decreased sized P‐values for most associations, hereby supporting the initial findings. Nevertheless, confirmation in additional study populations is needed.
Experimental Gerontology | 2014
Marianne Nygaard; Rune Lindahl-Jacobsen; Mette Soerensen; Jonas Mengel-From; Karen Andersen-Ranberg; Bernard Jeune; James W. Vaupel; Qihua Tan; Lene Christiansen; Kaare Christensen
Gene variants found to associate with human longevity in one population rarely replicate in other populations. The lack of consistent findings may partly be explained by genetic heterogeneity among long-lived individuals due to cohort differences in survival probability. In most high-income countries the probability of reaching e.g. 100years increases by 50-100% per decade, i.e. there is far less selection in more recent cohorts. Here we investigate the cohort specificity of variants in the APOE and FOXO3A genes by comparing the frequencies of the APOE ε4 allele and the minor alleles of two variants in FOXO3A at age 95+ and 100+ in 2712 individuals from the genetically homogeneous Danish birth cohorts 1895-96, 1905, 1910-11, and 1915. Generally, we find a decrease in the allele frequencies of the investigated APOE and FOXO3A variants in individuals from more recent birth cohorts. Assuming a recessive model, this negative trend is significant in 95+ year old individuals homozygous for the APOE ε4 allele (P=0.026) or for the FOXO3A rs7762395 minor allele (P=0.048). For the APOE ε4 allele, the significance is further strengthened when restricting to women (P=0.006). Supportive, but non-significant, trends are found for two of the three tested variants in individuals older than 100years. Altogether, this indicates that cohort differences in selection pressure on survival to the highest ages are reflected in the prevalence of longevity gene variants. Although the effect seems to be moderate, our findings could have an impact on genetic studies of human longevity.
Experimental Gerontology | 2014
Serena Dato; Mette Soerensen; Vincenzo Lagani; Alberto Montesanto; Giuseppe Passarino; Kaare Christensen; Qihua Tan; Lene Christiansen
Preservation of functional ability is a well-recognized marker of longevity. At a molecular level, a major determinant of the physiological decline occurring with aging is the imbalance between production and accumulation of oxidative damage to macromolecules, together with a decreased efficiency of stress response to avoid or repair such damage. In this paper we investigated the association of 38 genes (311 SNPs) belonging to the pro-antioxidant pathways with physical and cognitive performances, by analyzing single SNP and gene-based associations with Hand Grip strength (HG), Activities of Daily Living (ADL), Walking Speed (WS), Mini Mental State Examination (MMSE) and Composite Cognitive Score (CCS) in a Cohort of 1089 Danish nonagenarians. Moreover, for each gene analyzed in the pro-antioxidant pathway, we tested the influence on longitudinal survival. In the whole sample, nominal associations were found for TXNRD1 variability with ADL and WS, NDUFS1 and UCP3 with HG and WS, GCLC and UCP2 with WS (p<0.05). Stronger associations although not holding the multiple comparison correction, were observed between MMSE and NDUFV1, MT1A and GSTP1 variability (p<0.009). Moreover, we found that association between genetic variability in the pro-antioxidant pathway and functional status at old age is influenced by sex. In particular, most significant associations were observed in nonagenarian females, between HG scores and GLRX and UCP3 variability, between ADL levels and TXNRD1, MMSE and MT1A genetic variability. In males, a borderline statistically significant association with ADL level was found for UQCRFS1 gene. Nominally significant associations in relation to survival were found in the female sample only with SOD2, NDUFS1, UCP3 and TXNRD1 variability, the latter two confirming previous observations reported in the same cohort. Overall, our work supports the evidence that genes belonging to the pro-anti-oxidant pathway are able to modulate physical and cognitive performance after the ninth decade of life, finally influencing extreme survival.
European Journal of Human Genetics | 2014
Birgit Debrabant; Mette Soerensen; Friederike Flachsbart; Serena Dato; Jonas Mengel-From; Tinna Stevnsner; Vilhelm A. Bohr; Torben A. Kruse; Stefan Schreiber; Almut Nebel; Kaare Christensen; Qihua Tan; Lene Christiansen
DNA-damage response and repair are crucial to maintain genetic stability, and are consequently considered central to aging and longevity. Here, we investigate whether this pathway overall associates to longevity, and whether specific sub-processes are more strongly associated with longevity than others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10−5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using the competitive gene-set analysis by Wang et al indicated that BER, HRR and RECQ associated stronger with longevity than the respective remaining genes of the pathway (P-values=0.004–0.048). For HRR and RECQ, only one gene contributed to the significance, whereas for BER several genes contributed. These associations did, however, generally not pass correction for multiple testing. Still, these findings indicate that, of the entire pathway, variation in BER might influence longevity the most. These modest sized P-values were not replicated in a German sample. This might, though, be due to differences in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn.
Aging Cell | 2013
Qihua Tan; Mette Soerensen; Torben A. Kruse; Kaare Christensen; Lene Christiansen
Genetic interactions or epistasis could make a substantial contribution to variation in human complex traits including longevity. However, detecting epistatic interactions in high dimensional datasets is difficult due to various reasons including multiple testing of correlated tests. We introduce a novel permutation strategy to the case‐only analysis of gene‐by‐gene interaction using multiple SNPs. The method is applied to genes coding for Forkhead box O transcription factors which recently have been associated with human longevity across different populations hypothesizing that epistatic interaction in the regulation and expression of the FOXO gene family could contribute to the human longevity phenotype. Genotype data were collected from 1088 individuals from the Danish 1905 birth cohort aged over 92–93 years with 12 SNPs in the FOXO1a and 15 SNPs in the FOXO3a genes. Our analysis detected a joint effect between rs9486902 in FOXO3a and rs2701858 in FOXO1a that highly significantly contributes to human longevity (OR = 3.23, 95% CI: 2.93–3.53) which is consistent in both males and females. Our results were compared with published studies, and importance of our novel method and findings was discussed.
Mechanisms of Ageing and Development | 2012
Serena Dato; Mette Soerensen; Alberto Montesanto; Vincenzo Lagani; Giuseppe Passarino; Kaare Christensen; Lene Christiansen
An efficient uncoupling process is generally considered to have a protective effect on the aging muscle by slowing down its age-related decay. Genetic polymorphisms in the Uncoupling Protein 3 (UCP3) gene, whose product is mainly expressed in skeletal muscle, were suggested to be associated with hand grip (HG) performances in elderly populations. Considering the population specificity of the quality of aging, we aimed to add further support to this evidence by analyzing the association between four SNPs in the UCP3 gene and relative haplotypes in two large cohorts of middle aged (N=708) and oldest old Danes (N=908). We found that the variability at rs1685354 and rs11235972 was associated with HG levels both at single and haplotypic level in both cohorts. Furthermore, taking advantage of large cohort and period survival data of the oldest cohort, we tested the association of each SNP with survival at 10years from the baseline visit. Interestingly, we found that allele A at rs11235972, associated in this cohort with lowest HG scores, influences also the survival patterns, with people carrying this allele showing higher mortality rates. On the whole, our work supports the role of UCP3 gene in functional status and survival at old age.