Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi Jin Yoon is active.

Publication


Featured researches published by Mi Jin Yoon.


Carcinogenesis | 2013

Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation

Mi Jin Yoon; You Jung Kang; In Young Kim; Eun Hee Kim; Ju Ahn Lee; Jun Hee Lim; Taeg Kyu Kwon; Kyeong Sook Choi

Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is preferentially cytotoxic to cancer cells over normal cells. However, many cancer cells, including malignant glioma cells, tend to be resistant to TRAIL. Monensin (a polyether ionophore antibiotic that is widely used in veterinary medicine) and salinomycin (a compound that is structurally related to monensin and shows cancer stem cell-inhibiting activity) are currently recognized as anticancer drug candidates. In this study, we show that monensin effectively sensitizes various glioma cells, but not normal astrocytes, to TRAIL-mediated apoptosis; this occurs at least partly via monensin-induced endoplasmic reticulum (ER) stress, CHOP-mediated DR5 upregulation and proteasome-mediated downregulation of c-FLIP. Interestingly, other polyether antibiotics, such as salinomycin, nigericin, narasin and lasalocid A, also stimulated TRAIL-mediated apoptosis in glioma cells via ER stress, CHOP-mediated DR5 upregulation and c-FLIP downregulation. Taken together, these results suggest that combined treatment of glioma cells with TRAIL and polyether ionophore antibiotics may offer an effective therapeutic strategy.


Free Radical Biology and Medicine | 2010

Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells.

Mi Jin Yoon; Eun Hee Kim; Jun Hee Lim; Taeg Kyu Kwon; Kyeong Sook Choi

Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cell lines, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells.


Cell Death and Disease | 2017

Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin

Mi Jin Yoon; Yoon-A Kang; Lee Ja; Il Yong Kim; Moon-Hee Kim; Yong-Sung Lee; Junseong Park; Lee By; In Ah Kim; Hyun-Taek Kim; Sungwan Kim; A-Rum Yoon; Chae-Ok Yun; Eunhee Kim; Kyu-Yup Lee; Kyeong Sook Choi

Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells.


Experimental and Molecular Medicine | 2011

Paxilline enhances TRAIL-mediated apoptosis of glioma cells via modulation of c-FLIP, survivin and DR5.

You Jung Kang; In Young Kim; Eun Hee Kim; Mi Jin Yoon; Seung U. Kim; Taeg Kyu Kwon; Kyeong Sook Choi

Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells while sparing normal cells. However, many cancer cells are resistant to TRAIL-induced cell death. Here, we report that paxilline, an indole alkaloid from Penicillium paxilli, can sensitize various glioma cells to TRAIL-mediated apoptosis. While treatment with TRAIL alone caused partial processing of caspase-3 to its p20 intermediate in TRAIL-resistant glioma cell lines, co-treatment with TRAIL and subtoxic doses of paxilline caused complete processing of caspase-3 into its active subunits. Paxilline treatment markedly upregulated DR5, a receptor of TRAIL, through a CHOP/GADD153-mediated process. In addition, paxilline treatment markedly downregulated the protein levels of the short form of the cellular FLICE-inhibitory protein (c-FLIPS) and the caspase inhibitor, survivin, through proteasome-mediated degradation. Taken together, these results show that paxilline effectively sensitizes glioma cells to TRAIL-mediated apoptosis by modulating multiple components of the death receptor-mediated apoptotic pathway. Interestingly, paxilline/TRAIL co-treatment did not induce apoptosis in normal astrocytes, nor did it affect the protein levels of CHOP, DR5 or survivin in these cells. Thus, combined treatment regimens involving paxilline and TRAIL may offer an attractive strategy for safely treating resistant gliomas.


Cancer Letters | 2012

Simultaneous mitochondrial Ca2+ overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells

Mi Jin Yoon; Eun Hee Kim; Taeg Kyu Kwon; Sun Ah Park; Kyeong Sook Choi

In this study, we investigated the role of Ca(2+) in curcumin-induced paraptosis, a cell death mode that is accompanied by dilation of mitochondria and the endoplasmic reticulum (ER). Curcumin induced mitochondrial Ca(2+) overload selectively in the malignant breast cancer cells, but not in the normal breast cell, contributing to the dilation of mitochondria/ER and subsequent paraptotic cell death. In addition, we found that simultaneous inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (mNCX) and proteasomes can trigger a sustained mitochondrial Ca(2+) overload and effectively induce paraptosis in malignant breast cancer cells.


Neuro-oncology | 2011

Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation.

In Young Kim; You Jung Kang; Mi Jin Yoon; Eun Hee Kim; Seung U. Kim; Taeg Kyu Kwon; In Ah Kim; Kyeong Sook Choi

Amiodarone is a widely used anti-arrhythmic drug that inhibits diverse ion channels, including the Na(+)/Ca(2+) exchanger (NCX), L-type Ca(2+) channels, and Na(+) channels. Here, we report that subtoxic doses of amiodarone and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induced apoptosis of various glioma cells. Treatment of U251MG glioma cells with amiodarone increased intracellular Ca(2+) levels and enhanced the expression of the endoplasmic reticulum (ER) stress-inducible transcription factor C/EBP homologous protein (CHOP). This upregulation of CHOP was followed by marked upregulation of the TRAIL receptor, DR5. Suppression of DR5 expression by small interfering (si) RNAs almost completely blocked amiodarone/TRAIL-induced apoptosis in U251MG glioma cells, demonstrating that DR5 is critical to this cell death. siRNA-mediated CHOP suppression reduced amiodarone-induced DR5 upregulation and attenuated the cell death induced by amiodarone plus TRAIL. In addition, omitting Ca(2+) from the external medium using ethylene glycol tetraacetic acid markedly inhibited this cell death, reducing the protein levels of CHOP and DR5. These results suggest that amiodarone-induced influx of Ca(2+) plays an important role in sensitizing U251MG cells to TRAIL-mediated apoptosis through CHOP-mediated DR5 upregulation. Furthermore, subtoxic doses of bepridil and cibenzoline, two other anti-arrhythmic drugs with NCX-inhibitor activity, also sensitized glioma cells to TRAIL-mediated apoptosis, via the upregulation of both CHOP and DR5. Notably, amiodarone/TRAIL cotreatment did not induce cell death in astrocytes, nor did it affect the expression of CHOP or DR5 in these cells. These results collectively suggest that a combined regimen of amiodarone plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating resistant gliomas.


Carcinogenesis | 2012

Aurora B confers cancer cell resistance to TRAIL-induced apoptosis via phosphorylation of survivin

Mi Jin Yoon; Seok Soon Park; You Jung Kang; In Young Kim; Ju Ahn Lee; Jong Soo Lee; Eu-Gene Kim; Chang-Woo Lee; Kyeong Sook Choi

Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells while sparing normal cells. However, many cancer cells are resistant to TRAIL-induced cell death. In this study, we examined whether Aurora B, which is frequently overexpressed in cancer cells, is associated with TRAIL resistance. The protein levels of Aurora B were higher in TRAIL-resistant cancer cell lines than in TRAIL-sensitive cancer cell lines. Exogenously expressed Aurora B attenuated TRAIL-induced apoptosis in the tested TRAIL-sensitive cancer cell lines, whereas the small interfering RNA-mediated suppression of Aurora B expression stimulated TRAIL-mediated apoptosis in the tested TRAIL-resistant cancer cell lines. Furthermore, combined treatment with TRAIL and ZM447439, a specific inhibitor of Aurora B, synergistically induced apoptosis in various TRAIL-resistant cancer cells, suggesting that this combined regimen may represent an attractive strategy for effectively treating TRAIL-resistant malignant cancers. Mechanistically, the inhibition of Aurora B activity in various cancer cells commonly downregulated survivin protein levels and potentiated the activation of caspase-3. In addition, Aurora B inhibition induced mitotic catastrophe, which also contributed to the sensitization of cells to TRAIL-mediated apoptosis. Interestingly, forced overexpression of Aurora B increased the protein levels of survivin, but not those of a non-phosphorylatable survivin mutant in which threonine 117 was replaced by alanine, indicating that phosphorylation of survivin is required for this effect. Furthermore, TRAIL-induced apoptosis in MDA-MB-435S cells was attenuated by wild-type survivin but not by the non-phosphorylatable survivin mutant. Collectively, our results demonstrate that Aurora B confers TRAIL resistance to cancer cells via phosphorylation of survivin.


Oncotarget | 2014

Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells.

Mi Jin Yoon; A Reum Lee; Soo Ah Jeong; You-Sun Kim; Jin Yeop Kim; Yong-Jun Kwon; Kyeong Sook Choi


Oncotarget | 2015

Adenovirus expressing dual c-Met-specific shRNA exhibits potent antitumor effect through autophagic cell death accompanied by senescence-like phenotypes in glioblastoma cells

Jung-Sun Lee; Eonju Oh; Ji Young Yoo; Kyeong Sook Choi; Mi Jin Yoon; Chae-Ok Yun


Oncotarget | 2015

Ca 2+ influx-mediated dilation of the endoplasmic reticulum and c-FLIP L downregulation trigger CDDO-Me-induced apoptosis in breast cancer cells

Soo Ah Jeong; In Young Kim; A Reum Lee; Mi Jin Yoon; Hyeseong Cho; Jong-Soo Lee; Kyeong Sook Choi

Collaboration


Dive into the Mi Jin Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

In Ah Kim

Seoul National University Bundang Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge