Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi Shi is active.

Publication


Featured researches published by Mi Shi.


Advances in Genetics | 2007

Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project

Jay C. Dunlap; Katherine A. Borkovich; Matthew R. Henn; Gloria E. Turner; Matthew S. Sachs; N. Louise Glass; Kevin McCluskey; Michael Plamann; James E. Galagan; Bruce W. Birren; Richard L. Weiss; Jeffrey P. Townsend; Jennifer J. Loros; Mary Anne Nelson; Randy Lambreghts; Hildur V. Colot; Gyungsoon Park; Patrick D. Collopy; Carol S. Ringelberg; Christopher M. Crew; Liubov Litvinkova; Dave DeCaprio; Heather M. Hood; Susan Curilla; Mi Shi; Matthew Crawford; Michael Koerhsen; Phil Montgomery; Lisa Larson; Matthew Pearson

A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.


Cell | 2009

A Role for Casein Kinase 2 in the Mechanism Underlying Circadian Temperature Compensation

Arun Mehra; Mi Shi; Christopher L. Baker; Hildur V. Colot; Jennifer J. Loros; Jay C. Dunlap

Temperature compensation of circadian clocks is an unsolved problem with relevance to the general phenomenon of biological compensation. We identify casein kinase 2 (CK2) as a key regulator of temperature compensation of the Neurospora clock by determining that two long-standing clock mutants, chrono and period-3, displaying distinctive alterations in compensation encode the beta1 and alpha subunits of CK2, respectively. Reducing the dose of these subunits, particularly beta1, significantly alters temperature compensation without altering the enzymes Q(10). By contrast, other kinases and phosphatases implicated in clock function do not play appreciable roles in temperature compensation. CK2 exerts its effects on the clock by directly phosphorylating FREQUENCY (FRQ), and this phosphorylation is compromised in CK2 hypomorphs. Finally, mutation of certain putative CK2 phosphosites on FRQ, shown to be phosphorylated in vivo, predictably alters temperature compensation profiles effectively phenocopying CK2 mutants.


Cold Spring Harbor Symposia on Quantitative Biology | 2007

A Circadian Clock in Neurospora: How Genes and Proteins Cooperate to Produce a Sustained, Entrainable, and Compensated Biological Oscillator with a Period of about a Day

Jay C. Dunlap; Jennifer J. Loros; Hildur V. Colot; Arun Mehra; William J. Belden; Mi Shi; Christian I. Hong; Luis F. Larrondo; Christopher L. Baker; Chen-Hui Chen; C. Schwerdtfeger; Patrick D. Collopy; Joshua J. Gamsby; Randy Lambreghts

Neurospora has proven to be a tractable model system for understanding the molecular bases of circadian rhythms in eukaryotes. At the core of the circadian oscillatory system is a negative feedback loop in which two transcription factors, WC-1 and WC-2, act together to drive expression of the frq gene. WC-2 enters the promoter region of frq coincident with increases in frq expression and then exits when the cycle of transcription is over, whereas WC-1 can always be found there. FRQ promotes the phosphorylation of the WCs, thereby decreasing their activity, and phosphorylation of FRQ then leads to its turnover, allowing the cycle to reinitiate. By understanding the action of light and temperature on frq and FRQ expression, the molecular basis of circadian entrainment to environmental light and temperature cues can be understood, and recently a specific role for casein kinase 2 has been found in the mechanism underlying circadian temperature-compensation. These data promise molecular explanations for all of the canonical circadian properties of this model system, providing biochemical answers and regulatory logic that may be extended to more complex eukaryotes including humans.


PLOS Computational Biology | 2005

Circadian Rhythmicity by Autocatalysis

Arun Mehra; Christian I. Hong; Mi Shi; Jennifer J. Loros; Jay C. Dunlap; Peter Ruoff

The temperature compensated in vitro oscillation of cyanobacterial KaiC phosphorylation, the first example of a thermodynamically closed system showing circadian rhythmicity, only involves the three Kai proteins (KaiA, KaiB, and KaiC) and ATP. In this paper, we describe a model in which the KaiA- and KaiB-assisted autocatalytic phosphorylation and dephosphorylation of KaiC are the source for circadian rhythmicity. This model, based upon autocatalysis instead of transcription-translation negative feedback, shows temperature-compensated circadian limit-cycle oscillations with KaiC phosphorylation profiles and has period lengths and rate constant values that are consistent with experimental observations.


Genetics | 2010

FRQ-Interacting RNA Helicase Mediates Negative and Positive Feedback in the Neurospora Circadian Clock

Mi Shi; Michael A. Collett; Jennifer J. Loros; Jay C. Dunlap

The Neurospora circadian oscillator comprises FREQUENCY (FRQ) and its transcription activator, the White Collar Complex (WCC). Repression of WCCs transcriptional activity by FRQ via negative feedback is indispensable for clock function. An unbiased genetic screen that targeted mutants with defects in negative feedback regulation yielded a fully viable arrhythmic strain bearing a novel allele of FRQ-interacting RNA helicase (frh), an essential gene that encodes a putative exosome component protein. In the allele, frhR806H, clock function is completely disturbed, while roles of FRQ-interacting RNA helicase (FRH) essential for viability are left intact. FRHR806H still interacts with FRQ, but interaction between the FRQ–FRHR806H complex (FFC) and WCC is severely affected. Phosphorylation of WC-1 is reduced in the mutant leading to constantly elevated WCC activity, which breaks the negative feedback loop. WCC levels are considerably reduced in the mutant, especially those of WC-1, consistent both with loss of positive feedback (FRQ-dependent WC-1 stabilization) and with a reduced level of the FRQ-mediated WCC phosphorylation that leads to high WCC activity accompanied by rapid transcription-associated turnover. FRH overexpression promotes WC-1 accumulation, confirming that FRH together with FRQ plays a role in WC-1 stabilization. Identification of a viable allele of frh, displaying virtually complete loss of both negative and positive circadian feedback, positions FRH as a core component of the central oscillator that is permissive for rhythmicity but appears not to modulate periodicity. Moreover, the results suggest that there are clock-specific roles for FRH that are distinct from the predicted essential exosome-associated functions for the protein.


Genetics | 2008

A High-Density Single Nucleotide Polymorphism Map for Neurospora crassa

Randy Lambreghts; Mi Shi; William J. Belden; David DeCaprio; Daniel J. Park; Matthew R. Henn; James E. Galagan; Meray Baştürkmen; Bruce Birren; Matthew S. Sachs; Jay C. Dunlap; Jennifer J. Loros

We report the discovery and validation of a set of single nucleotide polymorphisms (SNPs) between the reference Neurospora crassa strain Oak Ridge and the Mauriceville strain (FGSC 2555), of sufficient density to allow fine mapping of most loci. Sequencing of Mauriceville cDNAs and alignment to the completed genomic sequence of the Oak Ridge strain identified 19,087 putative SNPs. Of these, a subset was validated by cleaved amplified polymorphic sequence (CAPS), a simple and robust PCR-based assay that reliably distinguishes between SNP alleles. Experimental confirmation resulted in the development of 250 CAPS markers distributed evenly over the genome. To demonstrate the applicability of this map, we used bulked segregant analysis followed by interval mapping to locate the csp-1 mutation to a narrow region on LGI. Subsequently, we refined mapping resolution to 74 kbp by developing additional markers, resequenced the candidate gene, NCU02713.3, in the mutant background, and phenocopied the mutation by gene replacement in the WT strain. Together, these techniques demonstrate a generally applicable and straightforward approach for the isolation of novel genes from existing mutants. Data on both putative and validated SNPs are deposited in a customized public database at the Broad Institute, which encourages augmentation by community users.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in Neurospora

Mi Shi; Luis F. Larrondo; Jennifer J. Loros; Jay C. Dunlap

In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle (≈60–120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress could be masking output from the circadian system, although a caveat was that the CDO sometimes requires several days to become consolidated. To circumvent this and observe both oscillators simultaneously, we used an assay using a codon-optimized luciferase to follow the circadian oscillator. Under conditions where the long-period, uncompensated, CDO-driven developmental rhythm was expressed for weeks in growth tubes, the luciferase rhythm in the same cultures continued in a typical compensated manner with a circadian period length dependent on the allelic state of frq. Periodograms revealed no influence of the CDO on the circadian oscillator. Instead, the CDO appears as a cryptic metabolic oscillator that can, under appropriate conditions, assume control of growth and development, thereby masking output from the circadian system. frq-driven luciferase as a reporter of the circadian oscillator may in this way provide a means for assessing prospective role(s) of metabolic and/or ancillary oscillators within cellular circadian systems.


Archive | 2004

Genetics and Molecular Biology of Circadian Rhythms

Jay C. Dunlap; Jennifer J. Loros; Deanna L. Denault; Kwangwon Lee; Allan C. Froehlich; Hildur V. Colot; Mi Shi; António M. Pregueiro

Biological rhythms represent a ubiquitous form of cellular and organismal temporal regulation. Circadian rhythms provide organisms with the ability to anticipate environmental cycles imposed by the earth’s rotation. Most eukaryotic organisms express this endogenous program allowing them to adapt to cyclic environmental conditions.


Cold Spring Harbor Symposia on Quantitative Biology | 2007

Circadian Output, Input, and Intracellular Oscillators: Insights into the Circadian Systems of Single Cells

Jennifer J. Loros; Jay C. Dunlap; Luis F. Larrondo; Mi Shi; William J. Belden; V.D. Gooch; Chen-Hui Chen; Christopher L. Baker; Arun Mehra; Hildur V. Colot; C. Schwerdtfeger; Randy Lambreghts; Patrick D. Collopy; Joshua J. Gamsby; Christian I. Hong

Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.


Genes & Development | 2007

The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output

William J. Belden; Luis F. Larrondo; Allan C. Froehlich; Mi Shi; Chen-Hui Chen; Jennifer J. Loros; Jay C. Dunlap

Collaboration


Dive into the Mi Shi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis F. Larrondo

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge