Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mia T. Levine is active.

Publication


Featured researches published by Mia T. Levine.


Genetics | 2008

Genomic Analysis of Adaptive Differentiation in Drosophila melanogaster

Thomas L. Turner; Mia T. Levine; Melissa L. Eckert; David J. Begun

Drosophila melanogaster shows clinal variation along latitudinal transects on multiple continents for several phenotypes, allozyme variants, sequence variants, and chromosome inversions. Previous investigation suggests that many such clines are due to spatially varying selection rather than demographic history, but the genomic extent of such selection is unknown. To map differentiation throughout the genome, we hybridized DNA from temperate and subtropical populations to Affymetrix tiling arrays. The dense genomic sampling of variants and low level of linkage disequilibrium in D. melanogaster enabled identification of many small, differentiated regions. Many regions are differentiated in parallel in the United States and Australia, strongly supporting the idea that they are influenced by spatially varying selection. Genomic differentiation is distributed nonrandomly with respect to gene function, even in regions differentiated on only one continent, providing further evidence for the role of selection. These data provide candidate genes for phenotypes known to vary clinally and implicate interesting new processes in genotype-by-environment interactions, including chorion proteins, proteins regulating meiotic recombination and segregation, gustatory and olfactory receptors, and proteins affecting synaptic function and behavior. This portrait of differentiation provides a genomic perspective on adaptation and the maintenance of variation through spatially varying selection.


PLOS Genetics | 2012

Phylogenomic Analysis Reveals Dynamic Evolutionary History of the Drosophila Heterochromatin Protein 1 (HP1) Gene Family

Mia T. Levine; Connor O. McCoy; Danielle Vermaak; Yuh Chwen G. Lee; Mary Alice Hiatt; Frederick A. Matsen; Harmit S. Malik

Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.


Genetics | 2007

Pervasive and Largely Lineage-Specific Adaptive Protein Evolution in the Dosage Compensation Complex of Drosophila melanogaster

Mia T. Levine; Alisha K. Holloway; Umbreen Arshad; David J. Begun

Dosage compensation refers to the equalization of X-linked gene transcription among heterogametic and homogametic sexes. In Drosophila, the dosage compensation complex (DCC) mediates the twofold hypertranscription of the single male X chromosome. Loss-of-function mutations at any DCC protein-coding gene are male lethal. Here we report a population genetic analysis suggesting that four of the five core DCC proteins—MSL1, MSL2, MSL3, and MOF—are evolving under positive selection in D. melanogaster. Within these four proteins, several domains that range in function from X chromosome localization to protein–protein interactions have elevated, D. melanogaster-specific, amino acid divergence.


Genetics | 2008

Evidence of Spatially Varying Selection Acting on Four Chromatin-Remodeling Loci in Drosophila melanogaster

Mia T. Levine; David J. Begun

The packaging of DNA into proper chromatin structure contributes to transcriptional regulation. This packaging is environment sensitive, yet its role in adaptation to novel environmental conditions is completely unknown. We set out to identify candidate chromatin-remodeling loci that are differentiated between tropical and temperate populations in Drosophila melanogaster, an ancestrally equatorial African species that has recently colonized temperate environments around the world. Here we describe sequence variation at seven such chromatin-remodeling loci, four of which (chd1, ssrp, chm, and glu) exhibit strong differentiation between tropical and temperate populations. An in-depth analysis of chm revealed sequence differentiation restricted to a small portion of the gene, as well as evidence of clinal variation along the east coasts of both the United States and Australia. The functions of chd1, chm, ssrp, and glu point to several novel hypotheses for the role of chromatin-based transcriptional regulation in adaptation to a novel environment. Specifically, both stress-induced transcription and developmental homeostasis emerge as potential functional targets of environment-dependent selection.


PLOS ONE | 2007

Comparative Population Genetics of the Immunity Gene, Relish: Is Adaptive Evolution Idiosyncratic?

Mia T. Levine; David J. Begun

The frequency of adaptive evolution acting on common loci in distant lineages remains an outstanding question in evolutionary biology. We asked whether the immunity factor, Relish, a gene with a history of directional selection in Drosophila simulans, shows evidence of a similar selective history in other Drosophila species. We found only weak evidence of recurrent adaptive protein evolution at the Relish locus in three sister species pairs, suggesting that this key component of the insect immune system has an idiosyncratic evolutionary history in Drosophila.


Molecular Biology and Evolution | 2016

Recurrent innovation at genes required for telomere integrity in Drosophila.

Yuh Chwen G. Lee; Courtney Leek; Mia T. Levine

Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond.


eLife | 2015

Mitotic fidelity requires transgenerational action of a testis-restricted HP1.

Mia T. Levine; Helen M. Vander Wende; Harmit S. Malik

Sperm-packaged DNA must undergo extensive reorganization to ensure its timely participation in embryonic mitosis. Whereas maternal control over this remodeling is well described, paternal contributions are virtually unknown. In this study, we show that Drosophila melanogaster males lacking Heterochromatin Protein 1E (HP1E) sire inviable embryos that undergo catastrophic mitosis. In these embryos, the paternal genome fails to condense and resolve into sister chromatids in synchrony with the maternal genome. This delay leads to a failure of paternal chromosomes, particularly the heterochromatin-rich sex chromosomes, to separate on the first mitotic spindle. Remarkably, HP1E is not inherited on mature sperm chromatin. Instead, HP1E primes paternal chromosomes during spermatogenesis to ensure faithful segregation post-fertilization. This transgenerational effect suggests that maternal control is necessary but not sufficient for transforming sperm DNA into a mitotically competent pronucleus. Instead, paternal action during spermiogenesis exerts post-fertilization control to ensure faithful chromosome segregation in the embryo. DOI: http://dx.doi.org/10.7554/eLife.07378.001


Cell | 2011

Learning to Protect Your Genome on the Fly

Mia T. Levine; Harmit S. Malik

Piwi-interacting RNAs (piRNAs) help defend host genomes against germline transposons. In this issue of Cell, Khurana et al. show how alterations in the piRNA-encoding loci within a single generation allow a naive fly genome to overcome the initially insurmountable challenge imposed by a newly encountered mobile element.


Fly | 2013

A rapidly evolving genomic toolkit for Drosophila heterochromatin

Mia T. Levine; Harmit S. Malik

Heterochromatin is the enigmatic eukaryotic genome compartment found mostly at telomeres and centromeres. Conventional approaches to sequence assembly and genetic manipulation fail in this highly repetitive, gene-sparse, and recombinationally silent DNA. In contrast, genetic and molecular analyses of euchromatin-encoded proteins that bind, remodel, and propagate heterochromatin have revealed its vital role in numerous cellular and evolutionary processes. Utilizing the 12 sequenced Drosophila genomes, Levine et al1 took a phylogenomic approach to discover new such protein “surrogates” of heterochromatin function and evolution. This paper reported over 20 new members of what was traditionally believed to be a small and static Heterochromatin Protein 1 (HP1) gene family. The newly identified HP1 proteins are structurally diverse, lineage-restricted, and expressed primarily in the male germline. The birth and death of HP1 genes follows a “revolving door” pattern, where new HP1s appear to replace old HP1s. Here, we address alternative evolutionary models that drive this constant innovation.


bioRxiv | 2018

Diversification and collapse of a telomere elongation mechanism

Bastien Saint-Leandre; Son C. Nguyen; Mia T. Levine

In virtually all eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert preferentially at telomeres. This exchange of goods between host and mobile element—wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation—has been called a ‘genomic symbiosis’. However, these telomere-specialized, ‘jockey’ family elements may actually evolve to selfishly over-replicate in the genomes that they ostensibly serve. Under this intra-genomic conflict model, we expect rapid diversification of telomere-specialized retrotransposon lineages and possibly, the breakdown of this tenuous relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-million-year-old ‘melanogaster species group’, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this striking retrotransposon lineage diversity. Moreover, an ancestrally telomere-specialized element has ‘escaped,’ residing now throughout the genome of D. rhopaloa. In D. biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long-reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Combined with previous reports of adaptive evolution at host proteins that regulate telomere length, telomere-associated retrotransposon diversification and disappearance offer compelling evidence that intra-genomic conflict shapes Drosophila telomere evolution.

Collaboration


Dive into the Mia T. Levine's collaboration.

Top Co-Authors

Avatar

David J. Begun

University of California

View shared research outputs
Top Co-Authors

Avatar

Harmit S. Malik

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Yuh Chwen G. Lee

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Helen M. Vander Wende

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Connor O. McCoy

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Corbin D. Jones

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge