Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Begun is active.

Publication


Featured researches published by David J. Begun.


Genetics | 2012

Genomic Variation in Natural Populations of Drosophila melanogaster

Charles H. Langley; Kristian A. Stevens; Charis Cardeno; Yuh Chwen G. Lee; Daniel R. Schrider; John E. Pool; Sasha A. Langley; Charlyn Suarez; Russell Corbett-Detig; Bryan Kolaczkowski; Shu Fang; Phillip M. Nista; Alisha K. Holloway; Andrew D. Kern; Colin N. Dewey; Yun S. Song; Matthew W. Hahn; David J. Begun

This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5′- and 3′-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species.


PLOS Genetics | 2012

Population Genomics of Sub-Saharan Drosophila melanogaster: African Diversity and Non-African Admixture

John E. Pool; Russell B. Corbett-Detig; Ryuichi P. Sugino; Kristian A. Stevens; Charis Cardeno; Marc W. Crepeau; Pablo Duchen; J. J. Emerson; Perot Saelao; David J. Begun; Charles H. Langley

Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations.


Genetics | 2011

Genomic Differentiation Between Temperate and Tropical Australian Populations of Drosophila melanogaster

Bryan Kolaczkowski; Andrew D. Kern; Alisha K. Holloway; David J. Begun

Determining the genetic basis of environmental adaptation is a central problem of evolutionary biology. This issue has been fruitfully addressed by examining genetic differentiation between populations that are recently separated and/or experience high rates of gene flow. A good example of this approach is the decades-long investigation of selection acting along latitudinal clines in Drosophila melanogaster. Here we use next-generation genome sequencing to reexamine the well-studied Australian D. melanogaster cline. We find evidence for extensive differentiation between temperate and tropical populations, with regulatory regions and unannotated regions showing particularly high levels of differentiation. Although the physical genomic scale of geographic differentiation is small—on the order of gene sized—we observed several larger highly differentiated regions. The region spanned by the cosmopolitan inversion polymorphism In(3R)P shows higher levels of differentiation, consistent with the major difference in allele frequencies of Standard and In(3R)P karyotypes in temperate vs. tropical Australian populations. Our analysis reveals evidence for spatially varying selection on a number of key biological processes, suggesting fundamental biological differences between flies from these two geographic regions.


Genetics | 2006

Evidence for de Novo Evolution of Testis-Expressed Genes in the Drosophila yakuba/Drosophila erecta Clade

David J. Begun; Heather A. Lindfors; Andrew D. Kern; Corbin D. Jones

The mutational origin and subsequent evolution of de novo genes, which are hypothesized to be genes of recent origin that are not obviously related to ancestral coding sequence, are poorly understood. However, accumulating evidence suggests that such genes may often function in male reproduction. Here we use testis-derived expressed sequence tags (ESTs) from Drosophila yakuba to identify genes that have likely arisen either in D. yakuba or in the D. yakuba/D. erecta ancestor. We found several such genes, which show testis-biased expression and are often X-linked. Comparative data indicate that three of these genes have very short open reading frames, which suggests the possibility that a significant number of testis-biased de novo genes in the D. yakuba/D. erecta clade may be noncoding RNA genes. These data, along with previously published data from D. melanogaster, support the idea that many de novo Drosophila genes function in male reproduction and that a small region of the X chromosome in the melanogaster subgroup may be a hotspot for the evolution of novel testis-biased genes.


Genetics | 2008

Genomic Analysis of Adaptive Differentiation in Drosophila melanogaster

Thomas L. Turner; Mia T. Levine; Melissa L. Eckert; David J. Begun

Drosophila melanogaster shows clinal variation along latitudinal transects on multiple continents for several phenotypes, allozyme variants, sequence variants, and chromosome inversions. Previous investigation suggests that many such clines are due to spatially varying selection rather than demographic history, but the genomic extent of such selection is unknown. To map differentiation throughout the genome, we hybridized DNA from temperate and subtropical populations to Affymetrix tiling arrays. The dense genomic sampling of variants and low level of linkage disequilibrium in D. melanogaster enabled identification of many small, differentiated regions. Many regions are differentiated in parallel in the United States and Australia, strongly supporting the idea that they are influenced by spatially varying selection. Genomic differentiation is distributed nonrandomly with respect to gene function, even in regions differentiated on only one continent, providing further evidence for the role of selection. These data provide candidate genes for phenotypes known to vary clinally and implicate interesting new processes in genotype-by-environment interactions, including chorion proteins, proteins regulating meiotic recombination and segregation, gustatory and olfactory receptors, and proteins affecting synaptic function and behavior. This portrait of differentiation provides a genomic perspective on adaptation and the maintenance of variation through spatially varying selection.


Science | 2014

Origin and Spread of de Novo Genes in Drosophila melanogaster Populations

Li Zhao; Perot Saelao; Corbin D. Jones; David J. Begun

Novel genes derived from ancestral noncoding sequences are polymorphic among fruit fly strains. Comparative genomic analyses have revealed that genes may arise from ancestrally nongenic sequence. However, the origin and spread of these de novo genes within populations remain obscure. We identified 142 segregating and 106 fixed testis-expressed de novo genes in a population sample of Drosophila melanogaster. These genes appear to derive primarily from ancestral intergenic, unexpressed open reading frames, with natural selection playing a significant role in their spread. These results reveal a heretofore unappreciated dynamism of gene content. Losses and Gains In order to better understand the process by which de novo genes originate, Zhao et al. (p. 769, published online 23 January) examined testis-based gene expression among Drosophila melanogaster strains and identified both fixed and polymorphic de novo genes. The results suggest that spontaneous activation of previously noncoding DNA may be an important factor in generating genetic novelty.


Archive | 1994

Selection, Recombination, and DNA Polymorphism in Drosophila

Charles F. Aquadro; David J. Begun; Eric C. Kindahl

A goal of molecular population genetics is to provide an historical understanding of evolutionary processes occurring within and between closely related populations. While molecular techniques can, in principle, be applied to any species, the use of a model system such as Drosophila melanogasterhas proved to be enormously fruitful. One recent finding demonstrates the utility of using a well characterized genetic system: Levels of (presumably) neutral DNA variation are positively correlated with recombination rates in D. melanogaster.1 In this chapter we discuss recent results from our lab which extend this early result, discuss competing models to explain the pattern, and discuss empirical approaches to distinguish among these models.


Genetics | 2005

Molecular Population Genetics of Accessory Gland Protein Genes and Testis-expressed Genes in Drosophila mojavensis and D. arizonae

Bradley J. Wagstaff; David J. Begun

Molecular population genetic investigation of Drosophila male reproductive genes has focused primarily on melanogaster subgroup accessory gland protein genes (Acps). Consistent with observations from male reproductive genes of numerous taxa, Acps evolve more rapidly than nonreproductive genes. However, within the Drosophila genus, large data sets from additional types of male reproductive genes and from different species groups are lacking. Here we report findings from a molecular population genetics analysis of male reproductive genes of the repleta group species, Drosophila arizonae and D. mojavensis. We find that Acps have dramatically higher average pairwise Ka/Ks (0.93) than testis-enriched genes (0.19) and previously reported melanogaster subgroup Acps (0.42). Overall, 10 of 19 Acps have Ka/Ks > 1 either in nonpolarized analyses or in at least one lineage of polarized analyses. Of the nine Acps for which outgroup data were available, average Ka/Ks was considerably higher in D. mojavensis (2.08) than in D. arizonae (0.87). Contrasts of polymorphism and divergence suggest that adaptive protein evolution at Acps is more common in D. mojavensis than in D. arizonae.


Genetics | 2006

Recently Evolved Genes Identified From Drosophila yakuba and D. erecta Accessory Gland Expressed Sequence Tags

David J. Begun; Heather A. Lindfors; Melissa E. Thompson; Alisha K. Holloway

The fraction of the genome associated with male reproduction in Drosophila may be unusually dynamic. For example, male reproduction-related genes show higher-than-average rates of protein divergence and gene expression evolution compared to most Drosophila genes. Drosophila male reproduction may also be enriched for novel genetic functions. Our earlier work, based on accessory gland protein genes (Acps) in D. simulans and D. melanogaster, suggested that the melanogaster subgroup Acps may be lost and/or gained on a relatively rapid timescale. Here we investigate this possibility more thoroughly through description of the accessory gland transcriptome in two melanogaster subgroup species, D. yakuba and D. erecta. A genomic analysis of previously unknown genes isolated from cDNA libraries of these species revealed several cases of genes present in one or both species, yet absent from ingroup and outgroup species. We found no evidence that these novel genes are attributable primarily to duplication and divergence, which suggests the possibility that Acps or other genes coding for small proteins may originate from ancestrally noncoding DNA.


Genetics | 2014

Parallel Geographic Variation in Drosophila melanogaster

Josie A. Reinhardt; Bryan Kolaczkowski; Corbin D. Jones; David J. Begun; Andrew D. Kern

Drosophila melanogaster, an ancestrally African species, has recently spread throughout the world, associated with human activity. The species has served as the focus of many studies investigating local adaptation relating to latitudinal variation in non-African populations, especially those from the United States and Australia. These studies have documented the existence of shared, genetically determined phenotypic clines for several life history and morphological traits. However, there are no studies designed to formally address the degree of shared latitudinal differentiation at the genomic level. Here we present our comparative analysis of such differentiation. Not surprisingly, we find evidence of substantial, shared selection responses on the two continents, probably resulting from selection on standing ancestral variation. The polymorphic inversion In(3R)P has an important effect on this pattern, but considerable parallelism is also observed across the genome in regions not associated with inversion polymorphism. Interestingly, parallel latitudinal differentiation is observed even for variants that are not particularly strongly differentiated, which suggests that very large numbers of polymorphisms are targets of spatially varying selection in this species.

Collaboration


Dive into the David J. Begun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corbin D. Jones

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Kern

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Perot Saelao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar

Mia T. Levine

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Matthew W. Hahn

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge